John D. Martin

☑ jdmartin86@gmail.com

jdmartin86.github.io

Education

2015 – 2021	Ph.D. Mechanical Engineering Stevens Institute of Technology. Advisor: Brendan Englot Thesis: Reinforcement Learning Algorithms for Representing and Managing Uncertainty in Robotics.
2013 - 2015	Graduate Coursework. Computer Science Columbia University.
2009 - 2012	B.S. Physics & Aerospace Engineering University of Maryland.

Publications

Conference Papers

- **J. D. Martin**, M. Bowling, D. Abel, and W. Dabney, "Settling the Reward Hypothesis," in *International Conference on Machine Learning*, PMLR, 2023.
- 2 R. Rafailov, K. B. Hatch, V. Kolev, **J. D. Martin**, M. Phielipp, and C. Finn, "Moto: Offline pre-training to online fine-tuning for model-based robot learning," in *7th Annual Conference on Robot Learning*, 2023.
- 3 F. Chen, **J. D. Martin**, Y. Huang, J. Wang, and B. Englot, "Autonomous exploration under uncertainty via deep reinforcement learning on graphs," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, IEEE, 2020, pp. 6140–6147.
- **J. D. Martin**, K. Doherty, C. Cyr, B. Englot, and J. Leonard, "Variational filtering with copula models for slam," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, IEEE, 2020, pp. 5066–5073.
- **J. D. Martin**, M. Lyskawinski, X. Li, and B. Englot, "Stochastically dominant distributional reinforcement learning," in *International Conference on Machine Learning*, PMLR, 2020, pp. 6745–6754.
- J. McConnell, J. D. Martin, and B. Englot, "Fusing concurrent orthogonal wide-aperture sonar images for dense underwater 3d reconstruction," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, IEEE, 2020, pp. 1653–1660.
- **J. D. Martin**, J. Wang, and B. Englot, "Sparse gaussian process temporal difference learning for marine robot navigation," in *Conference on Robot Learning*, PMLR, 2018, pp. 179–189.
- **J. D. Martin** and B. Englot, "Extending model-based policy gradients for robots in heteroscedastic environments," in *Conference on Robot Learning*, PMLR, 2017, pp. 438–447.

Articles

- F. Dave-Louis, **J. D. Martin**, and M. Bowling, "On the interplay between sparsity and training in deep reinforcement learning," *arXiv preprint arXiv:2501.16729*, 2025.
- **2** J. D. Martin, B. Burega, L. Kapeluck, and M. Bowling, "Meta-gradient search control: A method for improving the efficiency of dyna-style planning," *arXiv preprint arXiv:2406.19561*, 2024.
- **3** B. Burega, **J. D. Martin**, and M. Bowling, "Learning to prioritize planning updates in model-based reinforcement learning," *NeurIPS Workshop on Meta Learning*, 2022.
- J. D. Martin, "Time to take embodiment seriously," *RLDM RL as Agency Workshop* (Oral), 2022.
- **J. D. Martin**, P. Szenher, X. Lin, and B. Englot, "The stochastic road network environment for robust reinforcement learning," *ICRA Workshop on Releasing Robots into the Wild*, 2022.
- 6 E. Saleh, **J. D. Martin**, A. Koop, A. Pourzarabi, and M. Bowling, "Should models be accurate?" *arXiv preprint arXiv:2205.10736*, 2022.
 - **J. D. Martin** and J. Modayil, "Adapting the function approximation architecture in online reinforcement learning," *arXiv preprint arXiv:2106.09776*, 2021.

W. Fedus, D. Ghosh, **J. D. Martin**, M. G. Bellemare, Y. Bengio, and H. Larochelle, "On catastrophic interference in atari 2600 games," *arXiv preprint arXiv:2002.12499*, 2020.

Employment History

8

2024 - · · · ·	Research Fellow, Openmind Research Institute. I conduct fundamental research in artificial intelligence. I study theory and the design of learning algorithms for agentic systems at scale.
2023 - · · · ·	Adjunct Professor, University of Alberta, Department of Computing Science. I supervise graduate students studying artificial intelligence and machine learning.
2022 – · · · 2024	Research Scientist, Intel Labs. I performed applied and fundamental research in machine learning. My applied work focused on the detection of processor errors with code-specialized LLMs, fine-tuned for particular failure modalities. My fundamental work focuses on algorithms for model-based RL, sparsity in neural networks, and the design of reward functions.
2021 - 2022	 Postdoctoral Fellow, University of Alberta, Department of Computing Science. Advisor: <i>Michael Bowling</i> I studied the reward hypothesis, representations, and algorithms for sample-efficient planning.
Summer 2020	 Research Scientist Intern, DeepMind. Advisor: <i>Joseph Modayil</i> I studied online RL algorithms for building sparse networks from unstructured observations.
2019 – 2020	Student Researcher / Research Scientist Intern, Google AI. Advisor: Marc G. Bellemare I studied algorithms for reducing plasticity in neural networks.
2017 - 2019	Technical Consultant, Piasecki Aircraft. Focus areas: Conceptual design of experimental aircraft, proposal writing.
2012 – 2015	Robotics and Flight Controls Engineer, Sikorsky Aircraft. Focus areas: Design of motion planning and control algorithms, automation of full-scale S-76.

Invited Talks

2024	The Methodological Tangle of AI Research . University of Alberta, Edmonton, Canada.
	Reinforcement Learning and The Extended Mind Hypothesis . Cohere for AI virtual talk.
2023	The Issaquah Plan . Seattle Minds and Machines Meetup, Google DeepMind Seattle.
2022	Learning to Prioritize Planning Updates in Model-based Reinforcement Learning. University of Massachusetts, Amherst
2021	Adapting the Function Approximation Architecture in Online Reinforcement Learning . Google AI, Sparsity Reading Group
2020	Uncertainty, Perception, and Their Lessons for Creating General-purpose Robots . University of California, Berkeley
2019	From Tasks to Timescales: A path to generalization in reinforcement learning. Massachusetts Institute of Technology DeepMind, Edmonton Google Robotics, New York
2014	Sikorsky R& D: Motion Planning for Autonomous Rotorcraft. Stevens Institute of Technology

Academic Service

Masters Thesis Advising		
2024 -		Deepak Ranganatha Sastry Mamillapalli, University of Alberta, co-advised with Matt Taylor.
2023 -		Luke Kapeluck, University of Alberta, co-advised with Michael Bowling.
2022 - 2023		Bradley Burega, University of Alberta, co-advised with Michael Bowling.
2021 – 2024		Fatima Davelouis, University of Alberta, co-advised with Michael Bowling.
Organizer		

2025	Saving the Phenomena of Minds: An RLDM workshop for examining RL as an computational
	theory of mental phenomena.
2024	Finding the Frame Workshop: An RLC workshop for examining conceptual frameworks in RL.
2023 -	Seattle Minds and Machines Meetup: a seminar series for Reinforcement Learning in Computer
	Science and Computational Neuroscience researchers in the Seattle-area.

Workflow Chair

2022 📕 AAAI.

Program Chair

2023	📕 Barbados RL Workshop.
2021	NAAMII Winter AI School.
2020	ICML Reinforcment Learning Social

Reviewer

2025	ICML, RLC, RLDM, TMLR, CogSci, Workshops.
2024	ICML, TMLR, Workshops.
2023	ICML, TMLR, Nature Machine Intelligence.
2022	ICML, NeurIPS, RLDM.
2021	ICML, NeurIPS, ICLR.
2020	ICML, NeurIPS, ICRA, WAFR, Workshops.
2019	📕 AAAI, ICRA, RAL, CoRL.
2018	ICRA.
2017	IROS.

Mentor

Teaching Experience

Primary Instructor

Winter 2021

RL Lecture Series, Nepal Applied Mathematics and Informatics Institute.

Guest Lecturer

2017, 2020, 2021 Advanced Robotics, Stevens Institute of Technology.

Skills

Languages	English, Nepalese.
Coding	Python, LaTEX, C, C++, R, OCaml,
Libraries	JAX, Haiku, Tensorflow, Pandas, NumPy, Docker, Kubernetes, ROS,

Miscellaneous Experience

Awards and Achievements

Department of Homeland Security Doctoral Fellow.

Howard Hughes Award, American Helicopter Society.

References

2015

Available on Request