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REINFORCEMENT LEARNING ALGORITHMS FOR

REPRESENTING AND MANAGING UNCERTAINTY IN ROBOTICS

ABSTRACT

Robots encounter many forms of uncertainty during their operation. Whether related

to the state of their knowledge or to the random variation of their environments,

generally-applicable robots should be capable of making decisions in the presence

of uncertainty. This dissertation considers how a robot can learn to make decisions

through a trial-and-error process known as Reinforcement Learning (RL), and its

contributions focus on how uncertainty can be handled throughout this process.

The first set of contributions study how to represent and manage uncertainty

from a stochastic environment. We claim that a robot learner can reduce its exposure

to this uncertainty by approximating distributions of the return (i.e. total future

reward), then selecting actions whose outcomes stochastically dominate all others in

the second order. Two algorithms are presented that support this claim. Although

these algorithms are formalized for the general RL setting, we demonstrate they readily

apply to robot navigation problems, where updates are performed incrementally online,

and observations come from a high-dimensional stream of sensory data.

An additional contribution studies how to represent epistemic uncertainty

related to the learner’s knowledge of the expected return, also known as its value

function. Using Bayesian non-parametric regression, we describe how to learn an

effective value function and express confidence in value predictions after relatively few

interactions with the environment. This algorithm broadens the applicability of robots

operating in low-data regimes, particularly those using acoustic sensors, because they

can learn to navigate from a sensory stream that otherwise requires a hand-engineered
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decision policy. This claim is empirically supported with results in simulation and

from a physical underwater robot.

A final algorithm is introduced to represent a specific kind of spatially-varying

uncertainty, commonly found when using acoustic localization sensors. The algorithm

can help to improve a decision policy when used within a model-based RL framework.

Results show this to be effective for simulated robot navigation problems.

Taken together, these contributions underscore the significance of representing

and managing uncertainty as robots learn to make decisions with RL. This work

provides a step toward designing more generally-applicable robots that can operate

with less expert knowledge and can be deployed in a wider range of stochastic

environments.
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Chapter 1

Introduction

The science of Artificial Intelligence (AI) is often concerned with computing systems

that achieve goals by making decisions. A primary objective of this science is to embed

AI onto a physical device, and to scale the system so that it can solve increasingly

large and complex problems to eventually surpass human capabilities. Robots serve a

critical role to this endeavor; they are the physical devices that couple AI systems

to reality. In this dissertation, AI systems are the software that give life to a robot’s

hardware. They are the medium through which a robot’s sensory observations are

processed and mapped to its actions.

This dissertation is particularly concerned with systems that learn through a

sequential process of trial-and-error, known as Reinforcement Learning (RL). The

process involves an interaction between a learning system and an environment. At any

given time, the environment exists in some state. The learner experiences information

about the state through its sensory stream. Whenever it takes an action, the state will

change, upon which the learner will observe a scalar reward and sense the next state.

This process can repeat indefinitely, and the learner’s goal is often to take actions that

maximize the amount of reward it expects to experience in the future.

The success of reinforcement learning in recent years has compelled many

researchers to apply RL algorithms to robot decision making (Sutton et al., 2011;

Kalashnikov et al., 2018; Bellemare et al., 2020). RL algorithms require less expert

knowledge than classic methods involving feedback control (Åström & Murray, 2010)

or motion planning (LaValle, 2006), both of which assume the environment dynamics

are known a priori. Reducing prior knowledge can be beneficial for scaling robots
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to more general settings, where the environment dynamics are complex or unknown.

Instead of using a fixed model to determine actions, a learning robot adapts its actions

based on direct experience with the environment. Consequently, RL enables robots to

be deployed in a wide range of settings that can be impractical without adaptation.

This dissertation studies reinforcement learning as it pertains to uncertainty

in various forms, arising when a robot is scaled to more complex settings, and the

robot’s reliance on expert knowledge is reduced. Often the robot’s performance can be

significantly affected by the way uncertainty is represented and managed. In some cases,

its reliability can improve when actions are selected to avoid highly-stochastic parts of

the environment. In the past, improving reliability this way has involved replacing

the RL objective with a similar term that penalizes undesirable uncertainty (Delage

& Mannor, 2010; Nevmyvaka et al., 2006). Yet this approach almost always leads

to conservative behavior and suboptimal performance. This dissertation contributes

algorithms that improve reliability while simultaneously preserving optimality. Another

problem robots can encounter is learning from small amounts of experience. Bayesian

nonparametric regression has been identified through prior work as one potential

solution (Engel et al., 2003), but these methods require the robot to store all the

observations it experiences. This dissertation provides physical evidence that within

low-data regimes, experience can be effectively consolidated with data compression

informed by the posterior’s uncertainty.

1.1 Thesis Statement

The central claim of this work is that reinforcement learning algorithms that

represent and manage uncertainty can be used to broaden the applicability

of a robot decision making system.
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In RL, uncertainty can manifest in several forms, and this dissertation is

concerned with two of them. The first is aleatoric uncertainty ; this arises from random

variability in the environment dynamics. In most cases, the learner does not know

precisely what rewards to expect or what outcomes its action(s) will produce. The

second form, epistemic uncertainty, arises from a lack of knowledge about some aspect

of the problem; whether the learner’s knowledge is adequately represented and contains

all operationally-necessary information. In contrast to aleatoric, epistemic uncertainty

can be reduced with more experience and continued learning.

Representing uncertainty is accomplished with a distribution or statistics of the

random variable in question. This dissertation focuses on distributional representations

of the return (i.e. the system’s learning objective) and observation noise, and con-

centrates on those which are efficiently-computable and relevant to a robot’s specific

resource constraints. In the case of aleatoric uncertainty, the representation applies

to the random return. In the case of epistemic uncertainty, a posterior distribution

is placed over the expected return. The posterior is used to predict the utility of a

policy when few transitions have been experienced.

Managing uncertainty is accomplished in several ways. Distributional infor-

mation is employed to define useful decision making criteria. To improve reliability,

the learner may wish to reduce its exposure to aleatoric uncertainty, or parts of the

environment it believes are highly stochastic and potentially harmful to performance.

It is also possible to inform action selection using the principle of optimism (Brafman

& Tennenholtz, 2002). This approach prioritizes transitions that are experienced less

frequently, so that in the limit of infinite experience, the learner will have complete

knowledge of the transition structure.
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1.2 Approach

Support for the thesis statement comes from several algorithms, each of which has

its own mathematical justification and experimental validation. The algorithms

are applied to autonomous navigation; where a robot learns to reach a goal-point.

However, the proposed algorithms differ on their assumptions and on their treatment

of uncertainty.

Throughout this dissertation, algorithms are evaluated using experience from

both simulated environments and, when possible, from physical hardware. Simulation

experiments are conducted for various dynamic systems which are controlled by both

continuous and discrete actions. The low-dimensional variants are each intended to

provide a proof-of-concept for my ideas and provide intuition about the proposed

algorithms. The other experiments on physical platforms or with high-dimensional

simulators are intended to demonstrate the generality of the proposed algorithms and

their applicability to environments outside of those considered in the study.

1.3 Contributions

The primary contributions of this dissertation are based on papers that have been

peer reviewed, published in archival proceedings, or that will be submitted. Chapters

1, 2, and 7 are original to this dissertation. Chapters 3, 5, and 6 contain work that

was published in conference proceedings: (Martin et al., 2020), (Martin et al., 2018),

(Martin & Englot, 2017), respectively. Chapter 4 contains results to be submitted at

a forthcoming date. These papers are listed below.

Stochastically Dominant Distributional Reinforcement Learning

John D. Martin, Michal Lyskawinski, Xiaohu Li, Brendan Englot,
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37th International Conference on Machine Learning (ICML), 2020.

Uncertainty Aware Navigation using Online Distributional Reinforcement Learning

John D. Martin, Paul Szenher, Brendan Englot,

Transactions on Robotics (TRO), 2021, (In Preparation).

Sparse Gaussian Process Temporal Difference Learning for Marine Robot Navigation

John D. Martin, Jinkun Wang, Brendan Englot

2nd Annual Conference on Robot Learning (CoRL), 2018.

Extending Model-based Policy Gradients for Robots in Heteroscedastic Environments

John D. Martin, Brendan Englot

1st Annual Conference on Robot Learning (CoRL), 2017.

Other contributions: Several contributions of mine have been omitted, because

they are less related to the narrative this dissertation presents. However, they relate

to at least one of the dissertation’s main topics: RL, uncertainty, and robotics. These

include the following works.

Adapting the Function Approximation Architecture in Online Reinforcement Learning

John D. Martin and Joesph Modayil,

38th International Conference on Machine Learning (ICML), 2021, (Under review).

Variational Filtering with Copula Models for SLAM

John D. Martin and Kevin Doherty, Caralyn Cyr, Brendan Englot, John Leonard,

International Conference on Intelligent Robots and Systems (IROS) (2020).
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Autonomous Exploration Under Uncertainty via Deep Reinforcement Learning on

Graphs

Fanfei Chen, John D. Martin, Yewei Huang, Jinkun Wang, Brendan Englot,

International Conference on Intelligent Robots and Systems (IROS) (2020).

Fusing Concurrent Orthogonal Wide-aperture Sonar Images for Dense Underwater 3D

Reconstruction

John McConnell, John D. Martin, Brendan Englot,

International Conference on Intelligent Robots and Systems (IROS) (2020).

On Catastrophic Interference in Atari 2600 Games

William Fedus and Dibya Ghosh, John D. Martin, Marc G. Bellemare, Yoshua Bengio,

Hugo Larochelle,

Biological and Artificial Reinforcement Learning (BARL) workshop,

33rd Conference on Neural Information Processing Systems (NeurIPS), (2019).

1.4 Dissertation Layout

This dissertation contains seven chapters. Chapter 2 covers foundational material

needed to understand the primary contributions. Chapter 3 focuses on representing

and managing aleatoric uncertainty; it introduces an algorithm for learning return

distributions and using them to improve outcome reliability. These principles are

expanded in Chapter 4, to address concerns that are specific to robot sensory streams

and data gathering. Chapter 5 considers epistemic uncertainty in the expected return,
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and introduces an algorithm for learning in low-data regimes, relevant to underwater

robots. Chapter 6 introduces an algorithm that can learn from sensory streams

of common underwater robots, where aleatoric uncertainty in the observations is

heteroscedastic. The dissertation concludes with some potential ideas for future work

and a discussion of how the primary contributions support the thesis statement.
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Chapter 2

Foundations

This chapter introduces the reinforcement learning problem and several algorithmic

solution methods. In addition, it covers other mathematical and algorithmic concepts

needed to formalize the primary contributions of the remaining chapters, including

gradient flows and Gaussian process regression.

Common notation is used throughout this document. Random variables are

denoted with capital letters (e.g. X). Their realizations are denoted with lowercase

letters (e.g. x). Vectors are denoted with boldface letters (e.g. x), and sets are

denoted in calligraphic font (e.g. X ).

2.1 Reinforcement Learning

Reinforcement learning describes a sequential decision making problem, whereby a

computing system learns to act optimally from rewards collected after taking actions.

The interaction between the learning system and an environment is modeled as

a Markovian decision process 〈S,A, p, p1, γ〉, with states S ∈ S, actions A ∈ A,

transition distribution p(S ′, R|S = s, A = a), initial state distribution p1(S1), and

discount factor γ ∈ [0, 1) (Puterman, 1994). At each time step t ∈ N, the learner

takes an action At and transitions from its current state St to a next state St+1 while

collecting a reward Rt+1 ∈ R. Repeating this sequence produces a trajectory of

alternating states, actions, and rewards:

S1, A1, R2, S2, A2, R3, S3, A3, . . . .
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The outcome of an action sequence starting from state s and action a, which thereafter

follows policy1 π : S → P(A) is given by a return. The return at time t is defined as

the discounted sum of future rewards over the corresponding state-action trajectory:

Gπ
t , Rt+1 + γRt+2 + γ2Rt+3 + . . . | St = s, At = a. (2.1)

Since returns are random, the learner typically reasons about its expected value. The

expected return is called the value function (Sutton & Barto, 2018), or value for short.

The expectation is conditional on either a state or a state-action pair:

vπ(s) , E[Gπ
t |St = s], qπ(s, a) , E[Gπ

t |St = s, At = a].

The state-value function vπ is primarily used for prediction, and the action-value

function qπ is used in control problems, to evaluate the outcome of an immediate

action. The action-value function will be applied in the remaining chapters for the

problem of autonomous navigation.

Value functions are useful for defining decision policies. The greedy policy is

one such example where at every state, the action maximizing q is returned:

π∗(s) , arg max
a∈A

q(s, a),∀s ∈ S. (2.2)

In the event of a tie, actions are broken arbitrarily (e.g. uniformly at random). In

some cases, the learning system may wish to randomly deviate from the greedy policy,

for the sake of diversifying its experience. The ε-greedy policy allows the system to do

this with a simple modification to the greedy policy; with probability ε ∈ (0, 1), it

selects a uniformly-random action, and otherwise returns the greedy action.
1Policies in this dissertation are viewed as stationary distributions over actions.
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2.1.1 Value-based Algorithms

This dissertation is primarily focused on learning systems that estimate the value

function, then use their estimates to define policies for robot control. The value-based

algorithms in this dissertation are based on a well-known decomposition of the value

function, known as Bellman’s equation (Bellman, 1957). Here, Bellman’s equation is

presented in two forms, for the action-value function. The expectation equation is

qπ(s, a) =
∑
r,s′

p(s′, r|s, a) [r + γvπ(s′)] ,

=
∑
r,s′,a′

p(s′, r|s, a) [r + γqπ(s′, a′)π(a′|s′)] . (2.3)

The equation connects the state- and action-value functions. The optimality equation

q(s, a) =
∑
r,s′,a′

p(s′, r|s, a)

[
r + γmax

a′∈A
q(s′, a′)

]
(2.4)

evaluates the greedy policy. Using Bellman’s equations, many RL algorithms can be

defined to evaluate and improve policies.

2.1.2 Model-free Algorithms

Model-free algorithms learn value functions without explicitly representing the transi-

tion distribution p(s′, r|s, a). In the absence of a transition model, the learning system

estimates the value function by directly experiencing transition samples (s, a, r, s′),

and using them in (2.3) or (2.4). Transition samples are drawn from the true transition

distribution, simply by taking actions and observing the outcomes. Two model-free

algorithms considered in this dissertation are Sarsa (Rummery & Niranjan, 1994) and

Q-learning (Watkins & Dayan, 1992).
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Sarsa is an on-policy algorithm, meaning it estimates the value of the policy

used to collect experience. Given a suitable step size α ∈ R, its update rule adjusts

the current estimate in the direction of what is referred to as the temporal difference

error : r + γqπ(s′, a′)− qπ(s, a). At each step, the update rule is given by

qπ(s, a)← qπ(s, a) + α (r + γqπ(s′, a′)− qπ(s, a)) . (2.5)

Sarsa is a member of the temporal difference (TD) family of algorithms, originally

introduced by Sutton (1988). In on-policy control problems, Sarsa is commonly

implemented with the ε-greedy policy.

Q-learning is an off-policy algorithm, meaning it estimates the value of a target

policy that is different than what is used to collect experience, the behavior policy. In

this dissertation, the behavior policy is denoted β. Q-learning uses the greedy policy

as its target and applies the update rule

q(s, a)← q(s, a) + α

(
r + γmax

a′∈A
q(s′, a′)− q(s, a)

)
. (2.6)

Although a is selected with the behavior policy β, the target estimate r+γmaxa′∈A q(s
′, a′)

uses the value of the greedy (target) action.

2.1.3 Model-based Approaches

When a transition model of the environment is available, the learner can use it to

estimate a value function. With these algorithms, the learner would apply an update

rule (e.g. Q-learning) on simulated experience, generated by the model. Several kinds

of updates are available to model-based learners. In some cases, the learner may

update the model from its experience in the true environment. It could also be given a
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model which is left fixed. In some settings, model-based algorithms are more sample-

efficient than model-free algorithms, because they require fewer interactions with the

environment. However, when the model’s accuracy is poor, these learning systems can

potentially diverge from the excessive estimation bias (Atkeson & Santamaria, 1997).

Algorithm 1 outlines a common procedure that many model-based algorithms follow.

This uses a model m(·|s, a) ≈ p(·|s, a) and a starting state-action distribution d.

Algorithm 1 Model-based Reinforcement Learning
1: for t = 1, 2, · · · do
2: s′, r ∼ p(·|s, a) # Sample experience.
3: m, d←UpdateModel(s, a, r, s′)
4: v ←UpdateLearner(s, a, r, s′)
5: for t = 1, 2, · · ·Number of model updates do
6: ŝ, â ∼ d # Sample state and action.
7: ŝ′, r̂ ∼ m(·|ŝ, â) # Simulate experience.
8: v ←UpdateLearner(ŝ, â, r̂, ŝ′)

2.1.4 Value Representations

A reinforcement learning system is partly characterized by the way its value function

is represented. Tabular representations are perhaps the simplest; they store a separate

value for each state or state-action pair and primarily apply to finite domains. However,

as the number of states and actions become large, tabular representations quickly

become impractical to use. In addition, tabular representations are only applicable

to settings where the full state can be directly observed. Fully-observed states are

uncommon in robotics; their observations typically provide partial information about

the state, from their sensors.

Instead of experiencing states directly, a general learning system receives a

stream of observation vectors and rewards. Here an observation vector is generated

at each time step t by an unknown random function of the state: ot , o(St) ∈ Rd.
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The learner’s only knowledge of the observation function and of the environmental

dynamics comes from this single stream of experience.

With no direct access to the environment’s state, the learner forms an approxi-

mate value function to represent the value function. For example, an approximate

value can be represented as a linear function of a feature vector xt ∈ R`, separately

for each action:

q̂(xt, at; wt) , w>t xt, q̂(xt, at; wt) ≈ q(St, at). (2.7)

The feature vector is computed as a function of the observation. In general,

the approximate value function can be a non-linear function of the features. They

are often chosen from a family of parametric functions, and their parameters are

sometimes optimized while learning (Mnih et al., 2015). In this dissertation, we

consider instances of all these representations. Recently, the issue of optimizing the

weights w and internal feature parameters have been addressed with deep reinforcement

learning. For example, the Deep Q Network (DQN) (Mnih et al., 2015) approximates

the action-value function using a convolutional neural network architecture (LeCun

et al., 1998); it then optimizes the weights and feature parameters jointly through

stochastic gradient-based optimization.

2.1.5 Distributional Reinforcement Learning

In settings where it is beneficial to represent the uncertainty of outcomes, systems

may learn distributions over the return. A return distribution µ describes the possible

outcomes a learner could experience under its current policy. This is defined as

µ(s, a) , Law(Gt|St = s, At = a).
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Bellemare et al. (2017) first showed the return distribution satisfies a distributional

variant of Bellman’s equation. The backup operator applies the push-forward measure

f#µ
(A) , µ(f−1

# (A)) = ν(A), (2.8)

defined for all Borel measurable sets A, to the measurable mapping f (r,γ)(x) = r + γx.

The mapping encodes the recursive decomposition of an expected sample. The

distributional backup operator under policy π is defined to be

T πµ(s, a) ,
∫
R

∑
s′,a′

f
(r,γ)
] µ(s, a)π(a′|s′)p(dr, s′|s, a). (2.9)

Just as the standard Bellman equation is the focus of standard value-based RL,

the distributional operator (2.9) plays the central role in distributional RL; it mo-

tivates algorithms which attempt to represent µ and approximate it with repeated

application of the update µt+1(s, a) = T πµt(s, a), for any (s, a) ∈ S × A and steps

t = 0, 1, 2, · · · . The distributional operator that uses the greedy policy is denoted

without the superscript: T .

Return distributions have been represented in several ways. Using features from

a convolutional neural network (CNN), Bellemare et al. (2017) computes probabilities of

a Boltzmann distribution. Dabney et al. (2017) consider sample-based representations

generated by CNN features. And sample-based representations have been used in

subsequent work (Dabney et al., 2018; Rowland et al., 2019; Martin et al., 2020).

2.2 Gradient Flows

Chapter 3 introduces an algorithm based on a gradient flow within the space of

probability measures. Given a smooth function F : Rd → R, and a starting point
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x0 ∈ Rd, the gradient flow of F (x) is defined as the solution of the differential

equation: dx = −∇F (x(τ)), for time dτ , τ > 0 and initial condition x(0) = x0. This

is a standard Cauchy problem, with a unique solution if ∇F is Lipschitz continuous.

When F is non-differentiable, the gradient is replaced with its subgradient, which

gives a similar definition, omitted for simplicity.

An exact solution to the above gradient-flow problem is typically intractable.

A standard numerical method, called the Minimizing Movement Scheme (MMS)

(Gobbino, 1999), evolves x iteratively for small steps along the gradient of F at

the current point. Denoting the current point as xk, the next point is xk+1 =

xk−∇F (xk+1)h, with step size h ∈ R. Note xk+1 is equivalent to solving optimization

problem xk+1 = arg minx F (x)+||x−xk||2, where ||x−xk||2 is the 2-norm. Convergence

of the sequence {xk} to the exact solution has been established (Ambrosio, 2005).

2.3 Gaussian Process Regression

Gaussian process (GP) regression is a Bayesian non-parametric technique for learning

unknown functions from data (Rasmussen & Williams, 2005). For this purpose, a

random process is defined as a set of random variables indexed by x ∈ X . A Gaussian

process is one where variables of any finite subset are jointly Gaussian. In general, a

Gaussian process can represent a random vector if X is finite, and a random series if

it is countably infinite. When X is uncountably infinite, the process can represent a

random function F : X → R. Since subsets of F are Gaussian, its distribution is fully

specified by its mean and covariance, which are functions of the inputs x,x′ ∈ X :

f0(x) , E[F (x)], (2.10)

k(x,x′) , Cov[F (x), F (x′)]. (2.11)
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In the supervised regression setting, a learning system experiences an i.i.d sample

of tuples (x1, y1), (x2, y2), · · · . The system wishes to compute a posterior distribution

of F conditioned on a finite history of these observations. Observations are assumed

to come from a model of the form Y = F (x) + ε, where F (x) ∼ N (f0(x), k(x,x′))

denotes a random function value, and ε ∼ N (0, σ2) denotes an independent noise

variable. With GP regression, the learner analytically computes the posterior using

standard Gaussian formulas.

The joint distribution of two Gaussian variables A and B, whose respective

distributions are parameterized by means µA, µB, covariance matrices KAA,KBB,

and cross covariance matrices KAB = K>BA is

A
B

 ∼ N

µA
µB

 ,

KAA KAB

KBA KBB


 . (2.12)

The conditional distribution of A on B is Gaussian N (µB|A,ΣB|A) with parameters

µB|A = µA + KABK−1
BB(B − µB), (2.13)

KB|A = KAA −KABK−1
BBKBA. (2.14)

For a history of length n ∈ N, we define a covariance vector for some input x

to be k(x) , (k(x,x1), · · · , k(x,xn)), and the elements of the covariance matrix to be

Kij , k(xi,xj) for i, j ∈ {1, · · · , n}. A GP regression learning system considers the

joint distribution

F (x)

y

 ∼ N

f0(x)

0

 ,

k(x,x′) k(x)>

k(x) K + Σ


 . (2.15)
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To obtain predictive moments of the posterior distribution over F (x), the learner

applies (2.13) and (2.14):

f(x) = f0(x) + k(x)>(K + Σ)−1y, (2.16)

σ2
f (x) = k(x,x)− k(x)>(K + Σ)−1k(x). (2.17)

The learner can use (2.16) to predict function values at unexperienced samples x.

Furthermore, it can use (2.17) to predict the epistemic uncertainty associated with

the prediction. Based on the experience observed so far, the uncertainty provides a

measure of confidence that the prediction is accurate. As more data is collected, this

uncertainty will eventually vanish.

2.4 Summary

This chapter provided the technical foundation to frame the primary contributions of

chapters 3, 4, 5, and 6. All of the subsequent chapters treat the problem of autonomous

navigation as an instance of reinforcement learning, and each one applies a subset of

this chapter’s material to design its solution. Gradient flows and distributional RL are

applied in Chapter 3. Distributional RL is also considered in Chapter 4, in addition

to the concept of value representations. Gaussian process regression is applied in

chapters 5 and 6, for both model-free and model-based learning.
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Chapter 3

Handling Aleatoric Uncertainty of the Return

This chapter introduces a new policy to manage aleatoric uncertainty of the return.

This applies specifically to distributional RL systems (Chapter 2), which learn to

represent distributions of the random return. The chapter combines the proposed policy

with a new distributional RL algorithm to reduce exposure to unwanted stochasticity

from the environment. The chapter also presents a novel way to analyze the proposed

algorithm as a Wasserstein gradient flow, which allows the algorithm’s convergence to

be theoretically understood. When the environment contains multiple solution paths,

this proposed policy is shown to improve the reliability of the learner’s actions. The

chapter presents empirical results for simulated robot navigation problems.

3.1 Motivation

In reinforcement learning, a learner typically selects actions to maximize the expected

sum of future rewards, or the average return. But sometimes this performance criterion

can lead to undesirable outcomes, particularly when the environment is stochastic, and

uncertainty prevents the learner from achieving consistently good performance. The

expected return can also lead to degenerate solutions, where multiple policies have

the same maximum expected return. Such scenarios frequently arise in finance, when

multiple portfolios have the same average return but vary in different ways (Dentcheva

& Ruszczyński, 2006). These scenarios are also prevalent in robot navigation, whenever

multiple routes lead to the same goal. In each case, the expected return does not

capture the full state of uncertainty, and it can be useful to include metrics of

uncertainty in the learning objective.
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The Conditional Value at Risk (CVaRα) is one popular measure of uncertainty,

defined as the expected value under an α-fraction of outcomes (Artzner et al., 1999).

CVaR improves risk sensitivity by measuring expected utility over a set of undesirable

outcomes while ignoring the others. Given a distribution of the return, this can be

practical to implement and efficient to compute. The CVaR is employed in a great deal

of RL research to express uncertainty for policy optimization (Chow & Ghavamzadeh,

2014; Tamar et al., 2015), and when return distributions are leared (Dabney et al.,

2018; Keramati et al., 2020).

Although powerful, one question CVaR-based methods often leave unanswered

is how to specify the fraction of undesirable outcomes, i.e. the risk level α ∈ (0, 1).

This information typically comes from expert knowledge of the environment and is

held fixed throughout learning. In large environments, however, it could be useful

to consider multiple α-subsets that apply at different state and actions. This work

studies an approach that does not require prior knowledge of α. In doing so, we claim

that learning systems can apply more generally: to environments where specifying α

is difficult or not practical.

We propose a new distributional policy that simultaneously captures many risk

levels, therefore removing the need to select one. Specifically, the learner represents

finite distributions over the return and considers a point-wise statistic of all CVaR

values. We claim that our proposed approach allows learning systems to reduce their

exposure to uncertainty better than systems that represent uncertainty with only a

single CVaR statistic.

Our proposed policy is based on the Second Order Stochastic Dominance (SSD)

relation. The SSD relation is defined using distribution functions and compared over

the continuum of their realizable values. We say that X stochastically dominates Y

in the second order when their cumulative CDFs, F (2)(z) ,
∫ z
−∞ F (x)dx, satisfy the
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following equation, and we denote the relation X �(2) Y :

X �(2) Y ⇐⇒ F
(2)
X (z) ≤ F

(2)
Y (z), ∀ z ∈ R. (3.1)

The function F (2) defines the frontier of what is known as the dispersion space (Figure

3.1), whose volume reflects the degree to which a random variable differs from its

expected value, or its deterministic behavior. Outcomes that are disperse have more

uncertainty and are considered risky for a decision maker. Indeed, a fundamental result

from expected utility theory states that rational risk-averse agents prefer outcome X

to Y when X �(2) Y (Dentcheva & Ruszczyński, 2006). Drawing inspiration from this

idea, we apply SSD to random returns of competing actions, as means to select the

least-risky decision for off-policy RL.

This section presents the following contributions:

A domain-general means to measure risk: As we will show, the SSD relation

eliminates the need to select and tune the CVaR’s fraction of outcomes α. We apply

the relation in settings where there are multiple solutions, and the learner wishes to

select the most certain option.

A new uncertainty-sensitive policy: We use the SSD relation to define a new

policy with a distributional action-selection criterion. Our proposed policy is both

risk sensitive and able to preserve the expected return’s performance.

A new RL algorithm to learn return distributions: SSD implies an ordering

on the first two moments of random variables (Fishburn, 1980). To guarantee learned

return distributions converge in these moments, we propose a new algorithm that is

theoretically guaranteed to have this property, and we validate the theory with several
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-2 -1 E[X] = 0 1 2

F
(2)
X : N (0, 1)

F
(2)
Y : N (0, 2) α−E[X]

Dispersion Space

Figure 3.1: Dispersion space: The relative uncertainty of a random variable is
shown as the space between its cumulative CDF F

(2)
X and the asymptotes (dotted).

Here, the line α− E[X] defines the behavior of X as its uncertainty vanishes.
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targeted experiments.

3.2 Action Selection with SSD

Here we define the SSD decision policy (Fig. 3.2c) as a means to mitigate uncertainty

during learning. Given return distributions induced by each action in state s, the

policy selects the action whose corresponding return dominates all others in the second

order. This involves a point-wise comparison of their cumulative CDFs, F (2)
a (z), for

all a ∈ A, and the dominating action is the one who compares lowest at every z in

the return’s domain. For any state, we denote the return after taking action a to be

Ga and define the SSD action as the singular element of the set

ASSD , {a ∈ A : Ga �(2) Ga′ ,∀ a′ ∈ A \ {a}}. (3.2)

At first, constructing ASSD appears to be computationally intractable, since it

involves an infinite number of point-wise comparisons (over R). Fortunately, we can

circumvent this problem by using an alternative definition of SSD involving cumulative

quantile functions (Dentcheva & Ruszczyński, 2006):

F−2(τ) ,
∫ τ

0

F−1(t)dt. (3.3)

Here, τ ∈ (0, 1) is a cumulative probability. With this, the alternative definition

becomes:

X �(2) Y ⇐⇒ F−2
X (τ) ≥ F−2

Y (τ) ∀ τ ∈ (0, 1), (3.4)

where we assume that F−2
Y (0) = 0, and F−2

Y (1) =∞. However, this still involves an
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infinite number of comparisons. Define ξ(τ) , F−1
X (τ), and notice the CVaR for risk

level τ is F−2
X (τ)/τ = E[X|X ≤ ξ(τ)]. This means the SSD relation can be interpreted

as a continuum of CVaR comparisons for all τ ∈ (0, 1). From this we can surmise that

points along the boundary of dispersion space (Figure 3.1) represent unconditional

Values at Risk (VaR), suggesting a computationally-tractable way to evaluate SSD.

Lemma 1. Let τ ∈ (0, 1) and consider ξ(τ) = F−1
X (τ). Then F−2

X (τ) = E[X ≤ ξ(τ)].

Lemma 1 makes it possible to compare total expectations on subsets of the

return space instead of dealing with probability integrals over an unbounded domain.

Computations simplify even further when we consider discrete measure approximations

to the return distribution. We consider a Lagrangian (particle-based) discretization,

where µ(s, a) is supported on N ∈ N equally-likely Diracs at locations z(i) ∈ R:

µ(s, a) ≈ 1

N

N∑
i=1

δ
(s,a)

z(i)
.

Values are simple to compute from the corresponding samples, using the empirical

mean: Q(s, a) = 1
N

∑N
i=1 z

(i).

To apply (3.4), denote the ordered coordinates of a return distribution to be

z[1] ≤ z[2] ≤ · · · ≤ z[N ]. Then given particle sets for two random returns, Ga, Ga′ ,

induced by the actions a and a′, we have the following result.

Proposition 1. Ga �(2) Ga′ if, and only if

j∑
i=1

z[i]
a ≥

j∑
i=1

z
[i]
a′ , ∀ j = 1, · · · , N. (3.5)

The SSD policy is executed at each step by constructing ASSD using (3.5) and

a discrete representation of µ(s, a). In some cases ASSD may be empty (Figure 3.2c),
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Figure 3.2: Stochastic dominance action selection: Our action selection rule can
be visualized with plots of the CDF. In Fig. 3.2a, X �(1) Y , because X places more
mass on points larger than α. In Fig. 3.2b, the area left of z5 is greater than the
area to its right; hence X �(2) Y , because the enclosed area is always non-negative.
However, in Fig. 3.2c, neither variable dominates, because after z4, the enclosed area
becomes negative with respect to X.

indicating that total dominance cannot be established. Several heuristics could be

employed to handle this outcome, such as a next-best strategy. We choose to sample

the greedy actions uniformly at random, thus increasing uniform exploration when

dominance cannot be established while still constituting a strict enhancement of the

greedy policy when multiple solutions are present.

The following proposition guarantees that the SSD action will always have the

(equally) highest mean and the lowest second moment relative to the other returns.

Proposition 2 (Fishburn (1980)). Assume µ has two finite moments, denoted with

superscript (·). Then X �(2) Y if, and only if µ(1)
X ≥ µ

(1)
Y , or µ(1)

X = µ
(1)
Y and µ(2)

X ≤ µ
(2)
Y .

This implies that SSD orders random variables according to their mean unless

there is a tie, in which case the second moment is used. When learning return

distributions, Proposition 2 requires estimates of their first two moments be correctly

approximated; otherwise, SSD orderings may be invalid.
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3.3 Distributional Convergence in Moments

Moving forward, we seek algorithms for learning return distributions that are conver-

gent in the first two moments. This can be accomplished by showing convergence in

the second-order Wasserstein distance. The k-th order Wasserstein distance for any

two univariate measures µ, ν ∈ P(R), is defined as

Wk(µ, ν) , inf
γ∈Pk(µ,ν)

{∫
R2

|x− y|kdγ(x, y)

}1/k

, (3.6)

where Pk(µ, ν) is the set of all joint distributions with marginals µ and ν having k

finite moments. The distance describes an optimal transport problem, where one seeks

to transform µ to ν with minimum cost (Villani, 2008). Here, the cost is |x − y|k.

Since its convergence implies convergence in the first k moments, the Wk distance is

appealing as a distributional learning objective.

3.4 Distributional RL as Free-energy Minimization

Our proposed algorithm is based on a minimization of the free-energy functional

E(µ) , F (µ) + β−1H(µ). (3.7)

Here, F is the potential and H is the entropy of a single probability measure µ, with

inverse temperature parameter β ∈ R+. The potential energy defines what it means

for a distribution to be optimal. Its low-energy equilibrium is chosen to coincide

with minimum expected Bellman error, formed from the optimality version of the

distributional Bellman operator T . The algorithm reaches a fixed point when free

energy is minimized, meaning for some (s, a), T µ(s, a) = µ(s, a). Given a transition

sample (s, a, r, s′), the algorithm computes samples of the target distribution T µ(s, a),
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which are denoted T z(s, a). Our algorithm considers the potential energy

F (µ) ,
1

2

∫
(T z(s, a)− z(s, a))2 dµ =

∫
U(z)dµ. (3.8)

The optimal probability measure for these models is known to be the Gibbs measure:

µ∗(z) = Z−1 exp{−βU(z)}, where Z ,
∫

exp{−βU(z)}dz.

How can the convergence of return distributions be understood as free-energy

is minimized? Free-energy-based algorithms can be modeled as continuous-time

stochastic diffusion processes, where distributions {µt}t∈[0,1] evolve over a smooth

manifold of probability measures from P2(R). The dynamics of µt are known to obey

a diffusive partial differential equation, called the Fokker-Planck equation:

∂tµt = ∇ ·
(
µt∇(

δE

δµt
)

)
. (3.9)

Here, the sub-gradient with respect to time is denoted ∂t, and the first variation

(Gâteaux derivative) of free energy δE
δµ
. For energy-based algorithms, the Fokker-Plank

equation describes the solution path, or gradient flow, of µ as their updates evolve over

a manifold of probability measures. The following result makes this claim formally.

Proposition 3 (Ambrosio (2005)). Let {µt}t∈[0,1] be an absolutely-continuous curve

in P2(R). Then for t ∈ [0, 1], the vector field vt = ∇( δE
δt

(µ)) defines a gradient flow

on P2(R) as ∂tµt = −∇ · (µtvt), where ∇ · u is the divergence of the vector u.

Convergence to an optimal point can be guaranteed provided E is convex, which

we know to be the case for (3.7), which is quadratic and logarithmic in µ.

To approximately solve (3.9), we adopt an iterative procedure due to Jordan

et al. (1998). The procedure discretizes time in steps of h ∈ R+ and applies the
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proximal operator

ProxWhE(µk) , arg min
µ∈P2(µ,µk)

W2
2(µ, µk) + 2hE(µ). (3.10)

For every step k ∈ N, the operator generates a path of distributions {µt}Kt=1 such that

µk+1 = ProxWhE(µk) is equivalent to µK . In contrast with distributional RL algorithms

that apply T , we apply (3.10) to minimize a Wasserstein-regularized free energy.

Since E is convex, this method obtains the unique solution to (3.9), described in the

following result

Proposition 4 (Jordan et al. (1998)). Let µ0 ∈ P2(R) have finite free energy E(µ0) <

∞, and for a given h > 0, let {µ(h)
t }Kt=1 be the solution of the discrete-time variational

problem (3.10), with measures restricted to P2(R), the space with finite second moments.

Then as h→ 0, µ(h)
K → µT , where µT is the unique solution of (3.9) at T = hK.

One can evaluate the free-energy (3.8) over the solution sequence and observe

it becomes a decreasing function of time (i.e. a Lyapunov function). This implies that

the expected distributional Bellman error is minimized when using the JKO approach.

Proposition 5. Let {µ(h)
k }Kk=0 be the solution of the discrete-time variational problem

(3.10), with measures restricted to P2(R), the space with finite second moments. Then

E(µk) is a decreasing function of time.

Finally, we show that as β is annealed, the output of our proposed free-energy

optimization (3.10) is equivalent to the solution obtained from the distributional

Bellman operator T .

Theorem 1. If T µ = µ, then ProxWhE(µ) = µ as β →∞.
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3.5 Discrete Measure Solutions

Given an initial set of particles at some state-action pair z(s, a) = {z(1), · · · , z(N)},

we evolve them forward in time with steps of h to obtain the solution at t+ h. We

apply a finite number of gradient steps to approximate the convergence limit T = hK.

Finally we consider an entropic-regulated form of W2
2 (Cuturi, 2013) for two finite

distributions µ =
∑N

i=1 µiδx(i) and ν =
∑N

j=1 νjδy(j) :

Wβ(µ, ν) , inf
P∈RN×N+

〈P,C〉+ βKL(P |µ⊗ ν),

s.t.
N∑
j=1

Pij = µi,
N∑
i=1

Pij = νj.

Here, 〈P,C〉 denotes the Frobenius norm between the joint P and the square Euclidean

cost Cij = (xi − yj)2, and KL(P |µ ⊗ ν) =
∑

i,j[Pij log(Pij/µiνj) − Pij + µiνj]. The

entropic term promotes numerical stability by acting as a barrier function in the

positive octant. JKO steps under this new distance are defined as

ProxWβ

hF (µk) , arg min
µ∈P2(µ,µk)

Wβ(µ, µk) + 2hF (µ). (3.11)

The entropic-regularized distance, Wβ, can be computed using Sinkhorn iterations

(Sinkhorn, 1967). This procedure (detailed in the appendix) is differentiable, which

allows us to update represent particle locations with parametric models and update

their predictions with gradient steps computed through auto-differentiation.

3.6 Proposed Algorithm for Learning Return Distributions

We are now ready to describe our proposed algorithm, Online WGF Fitted Q-iteration

(Algorithm. 2). Our algorithm combines the solution of (3.11) into a Fitted Q-iteration
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algorithm (Riedmiller, 2005) to learn return distributions. The loss is computed with

Algorithm 3. The algorithm can apply to both on-policy and off-policy settings. Here,

we consider the off-policy case, and we compare different behavior policies that are

sensitive to aleatoric uncertainty. Both distributional policies and those based on

point estimates are represented with the operator B : P(R)|A| → P(A). Given a set of

return distributions, this outputs a distribution over actions.

Algorithm 2 Online WGF Fitted Q-iteration

1: z(s, a) = {z(i)}Ni=1 ∀ (s, a) ∈ S ×A

2: for t = 1, 2, · · · do

3: s′, r ∼ p(·|s, a) with a ∼ Bz(s, :)

4: a∗ ← arg maxa∈A{ 1
N

∑N
i=1 z

(i)(s′, a)}

5: T z[i] ← r + γz[i](s′, a∗) ∀ i ∈ [N ]

6: z(s, a)← arg minz L
Wβ

hFT
(z, z(s, a))

Algorithm 3 Proximal Loss
1: input: Source and target particles z, z0; T z

2: FT (z)← 1
2N

∑N
i=1[T z[i] − z[i]]2

3: Wβ(z, z0)← Sinkhornβ(z, z0)

4: output: LWβ

hFT
= Wβ(z, z0) + 2hFT (z)

3.7 Related Work

Modeling Risk in RL: Many have employed measures of uncertainty to replace

or regulate the optimization objective in RL using the Markowitz mean-variance

model (Markowitz, 1952). Among these include policy optimization and actor-critic

algorithms (Sato et al., 2001; Tamar et al., 2013). Constraint techniques have also been

considered using CVaR within a policy gradient and actor-critic framework (Chow
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et al., 2017). In contrast to methods that directly constrain the policy parameters,

we constrain the data distribution with action selection using SSD among the return

distributions. Dabney et al. (2018) trains risk-averse and risk-seeking agents from

return distributions sampled from various distortion risk measures. However, they do

not address problems involving multiple solutions. Furthermore, is it unclear how to

sample from SSD-equivalent distortions when total dominance cannot be established.

This investigation is left for future work.

Distributional RL: Our learning algorithm is inspired by the class of distributional

RL algorithms (Bellemare et al., 2017). These methods represent and learn a distri-

bution over the return, and use it to evaluate and optimize a policy (Barth-Maron

et al., 2018; Hessel et al., 2018). Bellemare et al. (2017) first showed the distributional

Bellman operator contracts in the supremal Wasserstein distance. They proposed a

discrete-measure approximation algorithm (C51) using a fixed mesh in return space

and later showed it converges in the Cramer distance (Rowland et al., 2018). Particle-

based methods that use Quantile Regression (QR), have shown encouraging progress

on empirical benchmarks (Dabney et al., 2017, 2018). However, understanding their

convergence beyond the first moment has been more challenging. By casting the

optimization problem as free-energy minimization in the space of probability measures,

we show that distributional RL can be modeled as the evolution of a WGF. Updates

in this framework have well-defined dynamics, permitting us to better understand

convergence and optimality.

Wasserstein Gradient Flows in RL: To our knowledge WGF solutions have only

been applied to policy gradient algorithms. Zhang et al. (2018) models stochastic

policy inference as free-energy minimization, and applies the jko scheme to derive
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Figure 3.3: Policy evaluation in the CliffWalk domain: The left plot shows wgf
estimates of the smoothed target distributions. Convergence of the proximal loss and
the squared value error are shown in the top two plots. Outcome-risk diagrams (right)
derived from distribution estimates illustrate the relative dispersion space size at s1.
The two inflections represent the bimodality of the distribution.

a policy gradient algorithm. Their method is couched within the Soft-Q learning

paradigm (Haarnoja et al., 2017, 2018). These algorithms train a deep neural network

to sample from a target Gibbs density using Stein Variational Gradient Descent (Liu

& Wang, 2016). Our algorithm learns distributions of the underlying return and thus

can be considered value-based. Furthermore, we are concerned with decision making

in the presence of aleatoric uncertainty, and when the agent must select the most

certain outcome from among many alternatives.

3.8 Empirical Results

In this section we verify several prior claims. Namely, we test the hypothesis that WGF

regression produces two accurate moment estimates. Next we show WGF solutions

from Algorithm 2 can recover return distributions in a policy evaluation setting. We

extend these results to the control setting with bootstrapped off-policy updates under

function approximation. In our final experiment, we quantify an agent’s ability to

mitigate uncertainty while gathering data with the SSD behavior policy. Details of

each experiment can be found in the Appendix.
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Figure 3.4: Distributions of moment estimation error: Quantile regression and
WGF regression produce similar estimates in one dimension. The number of support
samples is shown in parentheses.
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3.8.1 Moment Comparison

Given that standard quantile regression learns samples from a uniform mesh in

probability space, theory suggests accuracy improvements can be gained with a non-

uniform mesh produced from the solution of a WGF. To evaluate this hypothesis,

we compared the root mean squared error on a five component one-dimensional

Gaussian mixture model, intended to be representative of a geometrically-complex

return distribution. Ablations informed the parameterization of the proximal loss (See

appendix). We collected data from 100 independent trials, varying the number of

samples each method regressed. Our data shows there to be no statistical difference

between QR and WGF regression (Figure 3.4).

We interpret the observed insignificance as a consequence of using low-dimensional

data. The error from a uniform grid is expected to become more pronounced as di-

mensionality increases. Given that we are concerned with one-dimensional return

distributions, however, these results inform different message within our problem

setting; the distributions regressed through QR may be reasonably employed for SSD

action selection. We believe practitioners will find this result valuable when choosing

a regression method where two accurate moment estimates are required.

3.8.2 Policy Evaluation with WGF Fitted Q

Proposition 5 argues that repeated application of the proximal step (3.10) produces a

decreasing function of time, implying that the Bellman free energy is minimized at

convergence. Here, we verify this is indeed the case by learning the return distribution

in a policy evaluation setting. The problem is set within the CliffWalk domain (Fig.

3.3). The transition dynamics follow those in Sutton & Barto (1998). However, we

include a five-percent chance of falling off the cliff from adjacent states. We used fixed
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Monte Carlo (MC) targets from the optimal greedy policy.

Figure 3.3 shows the convergence of the proximal loss and the mean square value

error from the start state. As we can see, the estimated distribution (the histogram)

accurately captures the target’s features: the near certainty of walking off the cliff

when moving right, the added chance of doing the same when choosing left or down,

and finally the most profitable choice, moving up.

3.8.3 Control with WGF Fitted Q

Control under function approximation: In this experiment we test the hypoth-

esis that WGF Fitted Q-iteration is scalable to function approximation in the control

setting. We parameterize return distributions with a two-layer fully-connected neural

network of 256 hidden units. We use off-policy updates with bootstrapped targets and

compare performance results with an agent trained using the QR loss (Dabney et al.,

2017) on three common control tasks from the OpenAI Gym (Brockman et al., 2016):

MountainCar, CartPole, and LunarLander. The results in Figure 3.5 show that the

WGF method matches the performance of QR.

Control in the presence of uncertainty: This experiment studies how aleatoric

uncertainty is handled during training. Specifically, we compare different policies for

selecting among a multiplicity of competing solutions. We consider the ε-greedy, SSD,

and CVaRα behavior policies for α ∈ {0.05, 0.25, 0.45}. Each policy gathers data to

update a greedy target policy. Different data distributions arise from the way each

measures uncertainty.

We expect the data distribution under the SSD policy to favor outcomes with

higher certainty, because SSD compares the expected outcome over all represented risk

levels. CVaR policies consider the expected outcome for a single risk level. Uncertainty



35

drives action selection only when the specified risk level captures the true risk in the

current state. Otherwise, we expect CVaR policies to become risk neutral.

We revisit the CliffWalk domain with a modified reward structure (See ap-

pendix). Traversing the top and bottom rows have equal value. Each path has different

reward uncertainty; the top row is deterministic, whereas the bottom row samples

rewards from the Gaussian N (−1, 10−3). Under these conditions, we expect the SSD

policy to prefer the top path and risk neutral methods to prefer the bottom row, since

it will be more likely under a risk neutral policy.

Figure 3.6 shows the average episodic step count and return, along with their

95% confidence intervals computed from 50 trials. The step count data confirms our

hypothesis that the SSD policy induces the least-disperse data distribution, since it

takes the top path on average. We can also confirm that the ε-greedy policy chooses

the bottom path, which is more likely under the sampling distribution from s0 and

incidentally more dispersed. We observe similar behavior between QR to WGF Q

iteration, consistent with results in Figure 3.4. Both methods induce similar data

distributions over the top path at around the 75th episode. And in this domain, the

WGF method learns the quickest.

We find the greatest differences between the SSD and CVaR policies occur in

the transient phase of learning (Figure 3.7). The CVaR agent takes more exploratory

steps as a result of using a single uniform risk level. In high-stakes settings, the

consequence of exploration can vary from undesirable to catastrophic. Here a cliff fall

models a very costly outcome. Figure 3.7 shows the number of cliff falls encountered

throughout learning. Using the SSD policy results in a significantly lower number of

these experiences. We interpret this as positive evidence to suggest that SSD provides

a more comprehensive measure of uncertainty than CVaR.
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Figure 3.5: Performance on control problems: The WGF method matches the
final average return of quantile regression.

Figure 3.6: The SSD behavior policy recovers the optimal target policy
using samples from the least-disperse data distribution: We compare the
episodic step count and return using the SSD and ε-greedy policy. The distributional
methods differ in their sample complexity but realize the same final solution.
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Figure 3.7: Using many risk levels can improve exploration: One risk level is
not always appropriate for every state. Here, the CVaR policy leads the agent away
from its goal, causing it to explore more than with the SSD policy, which uses many
risk levels.
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3.9 Discussion

This paper argues for the use of SSD to select among a multiplicity of competing

solutions. This can be useful in settings where one wishes to minimize exposure

to uncertainty. We presented a convergent, online algorithm for learning return

distributions (WGF Fitted Q-iteration). Our simulations demonstrated the algorithm

can learn good policies, and that it scales up to function approximation. Based on our

experimental results, we concluded that the SSD behavior policy can reduce dispersion

in the data distribution and improve exploration in the presence of uncertainty.
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Chapter 4

Handling Aleatoric Uncertainty of the Return in Robotics

This chapter introduces a distributional RL algorithm for representing aleatoric uncer-

tainty of the return. It extends several ideas from the previous chapter (Chapter 3),

so they apply to robot learners using high-dimensional sensory streams.

Three main contributions are presented. The first is a new data-gathering

process for mobile robots. With this process, mobile robots can naturally learn to

navigate without having to impose episodic resets. The second contribution is a new

distributional RL algorithm. We show this algorithm is particularly well-suited to

high-dimensional sensory streams of unknown structure. Additionally, the algorithm

is designed to be incremental, so it can be useful to resource-constrained systems that

do not store histories of experience. The final contribution is an empirical finding that

shows distributional algorithms under function approximation struggle to actualize

the benefits of the SSD policy (Martin et al., 2020). This finding motivates future

work discussed in Chapter 7.

4.1 Continual Reinforcement Learning for Mobile Robots

Mobile robots are natural continual learners (Ring et al., 1994). Many of them operate

in large, expansive spaces, with discernibly unbounded volumes. Their experiences

can span long stretches of time that conceivably never end. Yet many mobile robots

restrict their applicability to more conservative environments when learning to act.

Instead, these robots consider only environments that can be experienced through

episodic interactions.

Episodes can be thought of as segments of experience. These begin at some
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starting state and continue until a termination state. Upon termination, a reset

will occur, assuming the robot can be brought back to the starting state (according

to its distribution). The episodic construct can be realistic for some robots, such

as manipulators. But for a number of reasons, the episodic construct limits the

applicability of mobile robot systems learning to navigate. This chapter argues that

by abandoning episodes in favor of continual RL, the environments to which mobile

robots can apply become less restrictive.

Consider the following example to motivate our proposed learning process. A

mobile robot taxi has been programmed to service transport requests across a city.

Based on prior knowledge, perhaps from past learning experiences, the robot is able

to complete these requests autonomously. For our purposes, this implies the robot can

experience the entire map in which it operates, and it can operate over an indefinite

period of time. It is assumed the actions used to service an individual request come

from a single policy that terminates at a goal-point, and a collection of these constitute

the learner’s behavior policy. As traffic conditions may randomly vary, the robot

stands to benefit from representing the inherent uncertainty of returns and adapting

a policy to avoid unnecessary variation. To reduce the chance of any unintended

outcomes, the robot does not update the policy it currently follows. Instead, it uses

the experience to update a separate target policy, using off-policy RL. At some point

in time, when the taxi receives a request for the target’s goal, it will stop learning and

switch to the target policy. It is generally assumed the target policy has sufficiently

converged when this happens. No learning occurs while the robot executes the target

policy. After the goal is reached, the system switches back to the behavior policy and

continues learning as before.

Compared to episodic learning, the continual learning process just described

is a more natural model of mobile robot operation. Episodic learning requires the
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robot to teleport back to the start state after servicing a request. Not only is this

awkward for mobile robots, but such resets can also be impractical to implement in the

kinds of large domains in which mobile robots can operate. The proposed continual

process allows for a robot to operate over long periods of time without interruption.

In addition, the robot will be better equipped to deal with environmental changes,

such as shifting traffic conditions and other environmental uncertainties.

4.1.1 Learning from observations with unknown structure

Another issue that precludes broad application of learning robots is the need to

structure the representation. When observations are known to come from a spatial

process, then representations based on convolutional neural networks (LeCun et al.,

1998) are known to be effective; for instance, in standard distributional RL (Bellemare

et al., 2017; Dabney et al., 2017), where observations arrive as standard images.

However, a robot’s sensory stream can output data in many other forms, and these

representations may be uninformative of any underlying observation structure.

Lidars can observe spatial phenomena, but often these sensors output informa-

tion as unstructured point clouds: sets of vectors expressed in body-centric coordinates.

The dimensionality of a point cloud can change from scan to scan, so it is reasonable

to use an occupancy vector as an alternative; a binary vector of fixed dimensional-

ity, representing the occupancy of a return within a three-dimensional spatial grid.

Occupancy vectors are considered unstructured, because their arrangement can be

arbitrary, and generally they are not indicative of any mutual dependencies. Alas,

lidar data is often preprocessed to provide spatial structure to common robot learning

systems. In comparison, learners that support observations of unknown structure have

potential to apply more broadly: to domains where sensory structure is unknown or is

too complex to be specified a priori.
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4.2 Distributional Continual Reinforcement Learning

In what follows, this chapter formalizes the continual RL setting and proposes an

incremental RL algorithm for learning return distributions as functions of observations

with unknown structure. The chapter’s main claim is the proposed algorithm broadens

the applicability of robot learners representing and managing uncertainty.

Algorithm 4 describes the observation process, where a robot experiences an

unending stream of observations and rewards. The robot has no knowledge of the

underlying state dynamics or observation function aside from the information provided

from its single stream of experience.

The robot’s goal is to learn a policy that maximizes the action-value at every

state while also minimizing uncertainty in the return as a secondary objective. In the

types of navigational domains this chapter considers, multiple actions whose values

are close (or equal) will exist, but their associated uncertainties may be quite different.

Similar to Chapter 3, the aleatoric uncertainty is represented with learned distributions

over the random returns

µ(st, at) , Law(Gt|S = st, A = at).

The robot’s learning system does not have direct access to the environment

state – only the observation stream. Furthermore, the functional form of the return

distribution is unknown. We therefore follow a conventional approach of approximating

it with an empirical distribution supported on n ∈ N equally-weighted atoms at the

locations g(i)(s, a) ∈ R (Dabney et al., 2017, 2018), i = 1, · · · , n:

µ(s, a) ≈
n∑
i=1

δ(g(i)(s, a)).
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Each support point is further approximated as a linear function of the features xt ∈ Rl,

ĝ(i)(xt, at;w
(i)
t ) ,

〈
w

(i)
t |xt

〉
, ĝ(i)(xt, at;w

(i)
t ) ≈ g(i)(s, a).

The features are in general nonlinear functions of the observations, provided as part

of the problem specification. Often, these functions are taken to be the final layer of a

neural network. For each action, the set of weights watt , {w(i)
t ∈ Rl, i = 1, · · · , n} is

updated according to an online temporal difference learning algorithm. Taken together,

the features and weights define the approximate return distribution µ̂(xt, at;w
at
t ) ≈

µ(s, a) for all (s, a) ∈ S ×A:

µ̂(xt, at;w
at
t ) ,

n∑
i=1

δ(ĝ(i)(xt, at;w
(i)
t )).

4.2.1 Quantile Regression with Temporal Differences

The proposed approximation uses a uniform discretization of the probability space

{τi = 2(i−1)+1
2n

, i = 1, · · · , n}, and it fits each weight vector by minimizing a function

of the temporal difference error

D
(j)
t , rt+1 + γĝ(j)(st+1, at+1;w

(j)
t )− ĝ(i)(st, at;w

(i)
t ).

Here ĝ(j)(st+1, at+1;w
(j)
t ) denotes the j-th sample of the next return distribution under

the weights of action at+1. We consider an off-policy learning algorithm; the next

action is chosen with the target policy π, and updates are made with experience

gathered under the behavior policy β. Experience is used to minimize the quantile

regression loss L(i)
QR(w) , E[D

(j)
t [τ (i) − I(D(j)

t < 0)]]. We approximate this with an
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empirical average of samples from the target distribution L̂(i)
QR(w) ≈ L

(i)
QR(w):

L̂
(i)
QR(w) ,

1

n

n∑
j=1

D
(j)
t [τ (i) − I(D(j)

t < 0)], (4.1)

w
(i)
t+1 = arg min

w∈Rl
L̂

(i)
QR(w), ∀ i = 1, · · · , n. (4.2)

The loss depends only on the weights of the term ĝ(i)(xt, at;w
(i)
t ), with the target term

held fixed. The weights are updated in steps of αt ∈ R in the direction of the loss

function’s semi-gradient, which ignore the dependence of the target term:

w
(i)
t+1 = w

(i)
t + αt∇L̂(i)

QR(w
(i)
t ).

This algorithm follows the same principles as the algorithm described by Dabney

et al. (2017). However, the proposed algorithm represents atoms as linear functions of

features for the first time.

Note that each atom is trained in isolation from the other atoms. Since they do

not share weights, and because there is no constraint enforcing a particular order, the

full collection cannot be guaranteed to represent a proper probability distribution at

every point in time. However, after a sufficient amount of data has been experienced,

the atoms tend to converge to the correct ordering.

Algorithm 4 Continual Off-policy Learning
input: αt, γ, β
initialize: o1 ∼ p1(·), w1

for t = 1, 2, · · · do
at ∼ β(xt)
ot+1, rt+1 ∼ p(·|ot, at)
xt+1 = concatenate(ot+1, 1)
wt+1 ←QTD(xt, at, rt+1, xt+1, at+1, wt)
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Algorithm 5 Quantile Temporal Difference Regression (QTD)
input: x, a, r, x′, a′, w
parameters: γ, α
do in parallel for i = 1, · · · , n
w(i) ← w(i) + α∇L̂(i)

QR(w(i))

4.3 Empirical Results

This section presents experimental results showing there are incremental distributional

RL algorithms that can learn from high-dimensional sensory streams with unknown

structure. Experiments additionally show the proposed algorithm can be applied to

a realistic robot navigation problem. Finally, the section analyzes the approximate

return distribution’s representation in the context of managing aleatoric uncertainty

with the SSD policy.

4.3.1 A Simulation Environment for Autonomous Navigation

Experiments consider the problem of autonomous navigation in a simulated suburban

environment. The environment is filled with buildings, houses, trees, traffic lights,

lampposts, one-way lanes, benches, signs, and rocks. All of these elements are three-

dimensional, and their geometry is highly emblematic of the physical space it strives

to model (Figure 4.1). The environment’s layout and dynamics come from the Carla

simulator (Dosovitskiy et al., 2017), in particular its Town-02 map (Figure 4.2). At the

most basic level, the environment’s underlying state is a continuously-valued position

of a simulated driving robot. Carla makes it possible to model multiple vehicles, but

our experiment only considers one. Our experiments map Carla’s continuous state

space to a fixed network of 134 waypoints, over which the vehicle traverses.

The network of waypoints approximates the roadway as a directed graph, where

directionality imposes the flow of traffic. Each vertex has two outgoing edges and
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Figure 4.1: Carla Simulation Environment: Three-dimensional scenes are shown
from Carla’s Town02 environment. The environment contains a variety of structures
that a self-driving robot would be expected to sense and process.
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Figure 4.2: Road network for simulated environment: The left image shows the
Carla Town-02 map. The right image shows the corresponding state-space graph after
a skeletonization routine was applied from the full-scale simulator.

at most two incoming edges. The outgoing edges represent two available actions:

a transition with the outgoing edge in the body-centric lefthand plane, or either a

self-looping edge or an outgoing edge in the righthand plane. Self-looping transitions

occur only along the straightaways to represent a braking action. At intersections,

there are always two outgoing edges.

The observation vector comes from a simulated lidar with thirty-two beams

and a range of 50m. At each step, the range returns are used to populate two planar

occupancy grids at different elevations (Figure 4.3). Each occupancy grid is a 256×256

mesh centered on the sensor and placed on top of the vehicle. When vectorized, this

produces a binary observation vector with d = 256× 256× 2 = 131, 072 dimensions.

Occupancy grids were chosen, because of their constant dimensionality. Each

of its cells encode the presence of a range return for some spatial region. Vectorizing

the occupancy grids ignores the mesh’s planar arrangement and effectively removes

the spatial inductive bias. This choice is important, as it reflects the more general
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Figure 4.3: Occupancy grids: Grid cells reflect presence of a lidar return in a cubic
spatial region centered on the vehicle. Data is shown for the evaluation start state
(123). The left image captures the high-elevation features, and the right image captures
those close to the ground.

case, when the observation structure is unknown.

Several different rewards are experienced throughout the environment. At each

regular transition, a time penalty of -1 is given. A bonus of one is given for reaching

the goal, making the reward zero at both goal states (58,59). Stochastic rewards are

observed at a simulated sidewalk placed at 88 and 90. This is drawn from a Gaussian

distribution N (−1, 0.2) with values clipped at -2 and 0.

Empirical Methodology: Experiments compare the performance of different target

policies. Since the target policy is learned off-policy, from experience collected in a

continual manner, it is less straightforward to empirically measure its performance

online. Therefore, evaluations are performed with counterfactual simulations. Every

10000 steps, the discounted return is approximated over a trajectory of maximum

length of 1000 steps using data in a separate (counterfactual) environment instance.

Although this evaluation strategy is not physically realistic, it is appropriate for our
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Figure 4.4: Ablations for considered policies under function approximation.

simulated setting, and it permits us to carefully study the proposed algorithm. Results

from this data are averaged over fifty seeds, and its standard error bars reflect the

random variation in the data due to different behavior actions and reward samples.

A different step size is used for each algorithm and policy. The step size is

reduced by half every 10000 steps. Ablations of this along with the number of atoms

used to approximate return distributions are shown in Figure 4.4.

The behavior policy β is a discrete distribution over the two actionsA = {a1, a2}.

Based on studies with a greedy target policy, the best total performance over one-

hundred thousand steps of learning occurred with Pr[a1] = 0.7. This was held fixed

and used for the other policies.

4.3.2 Performance Comparison of Proposed Policies

This experiment addresses the question of whether the proposed algorithm can be

applied to solve autonomous navigation problems from high-dimensional sensory

streams of unknown structure. The experiment follows the methodology described

previously, and it generates experience from the modified Carla environment.

Evaluations all start from state 123. This is significant, because there exist two
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Figure 4.5: Policy performance comparison with proposed algorithm.

paths that reach the goal with equal value. The paths split at state 117; the left path

intersects the simulated crosswalk and adds dispersion in the return; the forward path

can reach the goal with deterministic rewards in the optimal case. The experiment

compares the performance and the selected trajectory using a greedy target policy

and the SSD target policy from Chapter 3.

Results are shown in Figure 4.5. As expected, the SSD policy and the greedy

policy realize the same average performance. Both policies are able to reach the goal

in the minimum number of steps. However, the SSD policy was expected to select the

more deterministic path (Figure 4.6), but this was not observed in our data. Despite

the increased uncertainty along the path, the deterministic path is infrequently chosen

by the SSD policy. This finding motivates our next experiment.
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Noisy Path

SSD Path

Goal

Evaluation Start

Crosswalk

Point of equal value

Figure 4.6: Multiple solution paths: Two paths of equal value are present in the
environment. The noisy path intersects a simulated sidewalk, where the time penalty
is random. The other follows a path of deterministic rewards. The SSD policy is
expected to choose the deterministic option.
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4.3.3 Learning the SSD Policy with Different Representations

This experiment investigates why the proposed algorithm, with an SSD target policy,

does not favor the more deterministic path in the waypoint network (Figure 4.6). The

hypothesis is that the linear representation is preventing the algorithm from learning

an accurate return distribution, and that is producing a high number of false negative

comparisons at the waypoint where both solution paths split (117). To investigate

this, classification statistics of the proposed algorithm are compared with those of

a tabular learner, which uses oracle state information. Both systems learn with the

same update rule; they differ only in their representation. If the linear representation

is preventing the proposed algorithm from making correct SSD classifications, then its

associated true-positive rate will be lower than the tabular baseline.

Indeed, data in Figure 4.7 confirms this hypothesis. The data shows distributions

of the true positive rate as box plots. Box plots are shown for each atom of the

approximate return distribution learned with the best parameterization according to

the ablation study. Each box plot is supported on twenty samples of data computed by

drawing five evaluations without replacement from a population of fifty independent

evaluations. Note how the error rates are largely uniform over the samples; meaning

false classifications do not appear to be from a distinct subset of samples.

To investigate whether this trend held as the number of atoms increased,

the experiment was repeated. Data in Figure 4.8 shows classification errors and

the performance of both representations using 32 atoms. According to the data,

each learner is able to find a useful policy in terms of average reward. However,

the function approximation learner is never able to correctly classify SSD with its

distribution. Additional results which support this hypothesis were obtained in a

modified environment, with lower stochasticity; where the crosswalk affected only one



53

Figure 4.7: SSD classification accuracy with 4-atom return distributions:
The function approximation learner (left) is unable to correctly classify SSD. The
tabular learner (right) has a nearly perfect classification rate, except for its most
positive sample, which correctly classifies SSD in only half of the trials.

direction of traffic. These results were unchanged from Figure 4.7, and thus have

been omitted for clarity. Even in this simplified setting, the function approximation

learner was unable to make correct SSD classifications. All the evidence suggests it

may be challenging to approximate an accurate distribution within the data regime

of one-hundred thousand steps of experience, using functions of high-dimensional

sensory data. And although the learner can find a useful greedy policy, it may require

a significant amount of additional experience to improve accuracy well enough for

correct SSD classfications. This finding motivates ongoing work that studies different

policies to address this issue.

4.4 Discussion

This chapter argued for the use of continual RL for autonomous mobile robot navigation.

To this end, the chapter introduced an incremental distributional RL algorithm. The

algorithm was shown to learn return distributions from functions of high-dimensional

sensory data with unknown structure. The chapter evaluated the algorithm using

simulated lidar-based observations with over one-hundred thousand dimensions, sug-

gesting that it could be applied to other robotic systems to autonomously navigate
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Figure 4.8: SSD classification accuracy with 32-atom return distributions:
Using more atoms to represent a return distribution makes the learning problem more
challenging. However, it also reveals whether the data distribution favors one part
of the approximation. The performance plot on top shows that both representations
are learning a useful policy that achieves the minimum number of time steps. This
makes the representations appear the same. However, their respective classification
errors show large differences. Under function approximation, the learner cannot make
correct classifications (bottom left). The tabular agent shows that accuracy is biased
toward the support points (i.e. atoms) that are sampled most often (bottom right).
These come from clipped Gaussian distributed rewards, with likely values in its center
and extremes, which consume the probability mass of the tails.
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from sensory streams of lidar data. Although the proposed algorithm was able to

learn a useful policy, the chapter also revealed a limitation, relating to the system’s

representation. Additional work is needed to understand how approximation error

could be reduced or tolerated within uncertainty aware policies.
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Chapter 5

Handling Epistemic Uncertainty of the Expected Return

This chapter considers epistemic uncertainty in the expected return, and it proposes

an algorithm that applies to low-data regimes. These settings are particularly relevant

to underwater robots whose sensory data comes from acoustic localization beacons.

The proposed algorithm uses Gaussian process regression to maintain a predictive

posterior over the expected return, giving the learner a way to represent epistemic

uncertainty of its value predictions. Using the posterior’s covariance, which is a

measure of uncertainty, the proposed algorithm employs a maximum-likelihood data

compression to consolidate experience into smaller datasets used for online prediction.

This improves runtime and data efficiency and enables robots operating in low-data

regimes to learn navigation policies with RL. The chapter presents empirical results for

several simulated robotic systems and on a physical underwater robot. This provides

evidence that these robots can scale to settings that require adaptation.

5.1 Reinforcement Learning in Low-data Regimes

Underwater robots have a unique potential to benefit from reinforcement learning. They

operate in complex environments, where transition dynamics are difficult for experts

to model. Normally this would motivate the application of model-free algorithms that

learn from direct interaction with the environment. However, many underwater robots

sense their environment at low rates (e.g. 1Hz), through noisy acoustic positioning

sensors which can rapidly drift and require the system to be reset after only a few

minutes of operation. This makes RL difficult to apply, since a standard model-free

algorithm requires thousands or millions of transitions to learn a useful decision policy.
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Despite such challenges, underwater robots could learn to navigate if they had RL

algorithms that were effective in low data regimes.

Prior work in RL has addressed the problem of sample efficiency within the

context of on-policy evaluation. In particular, Engel et al. (2003) introduced an

algorithm based on Gaussian process regression (Rasmussen & Williams, 2005) to

improve sample efficiency over conventional TD algorithms. Their algorithm, GP-

Sarsa, incorporates experience by forming a posterior over the value function and

conditioning on all past transition samples. This can be more efficient than successive

applications of TD updates, which discard experience after each step. GP-Sarsa places

a posterior distribution over the value function (i.e. the expected return), providing

learners with potentially useful information about epistemic uncertainty. GP-Sarsa’s

main drawback is its prediction complexity, which prohibitively scales as O(t3), where

t is the number of transitions experienced.

In this work, we ask whether GP-Sarsa can be extended to realistic robotic

settings, where updates are applied online with small amounts of data (e.g. t ≈ 1000).

We propose a sparse approximation to reduce the runtime complexity of GP-Sarsa’s

exact posterior predictions. The proposed approximation replaces the full history

of transitions with a smaller set containing m transition samples trained from the

full set to provide the same posterior support. This is known as the sparse pseudo-

input approximation (Snelson & Ghahramani, 2006). Conditioning on the reduced

set, our algorithm achieves the same prediction complexity as the state-of-the-art

approximations (Csato & Opper, 2002; Engel et al., 2003, 2005; Jakab & Csato, 2011),

while incurring less approximation error.

The contributions of this chapter are as follows
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A sparse approximation Although SPGP regression is well-known, it has never

been applied to TD estimation, where latent variables exhibit serial correlation.

5.2 On Policy Evaluation with Gaussian Process Regression

We begin by describing the mathematical formalism for GP-Sarsa. The formalism

follows a Bayesian methodology to derive an exact posterior distribution over the

expected return Q(s, a). First, the random return Gt is expressed as a sum of its

mean, Q(s, a), and zero-mean residual, ∆Q(s, a) = Gt−Q(s, a). This is used to define

the residual of a Gaussian reward model:

ε(s, a, s′, a′) , ∆Q(s, a)− γ∆Q(s′, a′), (5.1)

R = Q(s, a)− γQ(s′, a′) + ε(s, a, s′, a′). (5.2)

To reduce notation, we drop the functional state-action dependence on residuals. Our

work makes the simplifying assumption that residuals, ε, are i.i.d random variables

from a stationary distribution, ε ∼ N (0, σ2). After t time steps, the full reward model

can be written with matrix notation:



R2

R3

...

Rt+1


=



1 −γ 0 · · · 0

0 1 −γ · · · 0

...
...

0 0 · · · 1 −γ





Q(s1, a1)

Q(s2, a2)

...

Q(st+1, at+1)


+



ε1

ε2

...

εt+1


. (5.3)

We denote the vector of rewards r ∈ Rt, the matrix of discounts Γ ∈ Rt×(t+1), values

q ∈ Rt+1, and residuals ε ∈ Rt+1 such that r = Γq + ε. Similar to the supervised

setting in which GPs are typically applied, we assume q is a latent function whose
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Figure 5.1: Visualizing the GP-Sarsa posterior: We plot the predictive distribu-
tions of GP-Sarsa (left) and our approximate method, SPGP-Sarsa. We used m = 7
randomly-initialized pseudo inputs (red crosses) and t = 50 training samples (magenta)
taken from the prior. The predictive mean is black, and two standard deviations of
uncertainty are shown in gray. We plot SPGP-Sarsa before (center) and after pseudo
input optimization (right). After training, the sparse method is nearly identical to the
exact method.

outputs are observed through the noisy reward process. However, unlike the supervised

setting, the matrix Γ imposes temporal correlations between latent function values.

The value function’s distribution model considers the covariance matrix Kqq with

elements [Kqq]ij , k(si, ai, sj, aj), for i, j ∈ {1, · · · , t + 1}: q ∼ N (0,Kqq). We

also define Krr , ΓKqqΓ
>, and kr∗ , Γk∗, where [k∗]i , k(si, ai, s, a), and follow

conventional notation where subscripts denote dimensionality, e.g. Kqq ∈ R|q|×|q|.

With a fully Gaussian model, the exact posterior mean and variance are

q̂(s, a) = k>r∗(Krr + σ2I)−1r, (5.4)

σ̂2
q (s, a) = k(s, a, s, a)− k>r∗(Krr + σ2I)−1kr∗. (5.5)

GP-Sarsa approximates the on policy value function with the posterior mean (5.4).

This requires an expensive t×tmatrix inversion, costingO(t3) floating point operations.
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5.3 On Policy RL with Sparse Gaussian Process Regression

To improve the time complexity needed to evaluate a policy, we propose an approxi-

mation that induces sparsity in the GP-Sarsa likelihood model (5.3). This is based on

Sparse Pseudo-input GP regression (Snelson & Ghahramani, 2006) (Figure 5.1). Our

approximation expands the probability space with m� t additional pseudo values,

denoted q̃ ∈ Rm. Here, pseudo values serve as parametric support points, providing

probability mass at locations Z , {s̃1, ã1, · · · , s̃m, ãm}. These extra latent variables

obey the same observation process as q, but without any epistemic uncertainty, since

they are treated as hyperparameters and specified as part of the RL problem. Condi-

tioning predictions on the pseudo variables collapses the predictive probability space

such that all dense matrix inversions are of rank m. Furthermore, the hyperparameters

are optimized to maximize likelihood and improve the approximate value function’s

fit.

Latent Value Likelihood Model: Given a state-action pair, the likelihood of the

value, Q(s, a), is the conditional probability

p(Q|s, a,Z, q̃) = N (Q|k>q̃ K−1
q̃q̃ q̃, k(s, a, s, a)− k>q̃ K−1

q̃q̃ kq̃), (5.6)

where [Kq̃q̃]ij , k(s̃i, ãi, s̃j, ãj), [kq̃]i , k(s̃i, ãi, s, a). The complete likelihood is

obtained by stacking the t independent single transition likelihoods over the full

history H , {(si, ai)}ti=1:

p(q|H,Z, q̃) =
t∏
i=1

p(Qt|si, ai,Z, q̃) = N (g, K̃); (5.7)
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where we define g , Kqq̃K
−1
q̃q̃ q̃, K̃ , diag(Kqq − Kqq̃K

−1
q̃q̃ Kq̃q), with [Kqq̃]ij ,

k(si, ai, s̃j, ãj).

Conditioned Observation Likelihood Model: Here we derive the likelihood

distribution of the observed rewards conditioned on the pseudo values p(r|H,Z, q̃).

Consider the transformed joint distribution over values, rewards, and pseudo values


q

r

q̃

 ∼ N



0

0

0

 ,


Kqq KqqΓ

> Kqq̃

ΓKqq ΓKqqΓ
> + σ2I ΓKq̃q

Kq̃q Kq̃qΓ
> Kq̃q̃


 .

The likelihood is obtained by conditioning r on q̃ and invoking transition independence:

p(r|H,Z, q̃) = N (Krq̃K
−1
q̃q̃ q̃,Q + σ2I), Q , diag(Krr −Krq̃K

−1
q̃q̃ Kq̃r). (5.8)

Posterior of Pseudo Values: To obtain the posterior p(q̃|r,H,Z), we use Bayes’

rule. Given the marginal p(q̃|Z) = N (q̃|0,Kq̃q̃) and the conditional for r given q̃

(5.8), the posterior for q̃ given r is

p(q̃|r,H,Z) = N (q̃|LK−1
q̃q̃ Kq̃r(Q + σ2I)−1r,L); (5.9)

L , Kq̃q̃(Kq̃q̃ + Kq̃r(Q + σ2I)−1Krq̃)
−1Kq̃q̃.

Latent Value Predictive Posterior: The predictive posterior is obtained by

marginalizing the pseudo values:

p(Q|s, a, r,H,Z) =

∫
p(Q|s, a,Z, q̃)p(q̃|r,H,Z)dq̃.
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Let M , Kq̃q̃ + Kq̃r(Q + σ2I)−1Krq̃. The new predictive posterior is Gaussian with

mean and variance

q̃(s, a) = k>q̃∗M
−1Kq̃r(Q + σ2I)−1r, (5.10)

σ̃2
q (s, a) = k(s, a, s, a)− k>q̃∗(K

−1
q̃q̃ −M−1)kq̃∗. (5.11)

Equations 5.10 and 5.11 represent our main contribution. The predictions depend

on two matrix inversions. The first is the dense m-rank matrix, Kq̃q̃. The second

is the t-rank diagonal matrix (Q + σ2I). When m � t, both matrices are easier to

invert than a dense t-rank matrix. Thus, (5.10) provides motivation for estimating

and predicting latent values efficiently.

5.3.1 Policy Evaluation with Sparse GP-Sarsa

We now turn to the question of how a learning system could apply our sparse ap-

proximation to evaluate a policy. We introduce SPGP-Sarsa (Algorithm 6). Given

a transition sample along with the history of observations and pseudo inputs, the

algorithm incorporates new experience into r, H, and the matrices used to represent

the predictive mean and variance. Algorithm 6 returns the updated representations

such that they can be used to approximate the expected value function and its pre-

dictive variance for any state-action pair. With an abuse of notation, the moment

representations are denoted q̃(s, a), and σ̃2
q (s, a).
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Algorithm 6 SPGP-Sarsa
1: input s, a, r, s′, a′, r, H

2: Hyperparameters: Θ

3: r← concatenate(r, r)

4: H ← H∪ {(s′, a′)}

5: Update representation of q̃(s, a) from (5.10).

6: Update representation of σ̃2
q (s, a) from (5.11).

7: return q̃(s, a), σ̃2
q (s, a), r, H

5.3.2 Optimizing Hyperparameters

Hyperparameters are fit to the observed data by maximizing the marginal likelihood.

Hyperparameters include kernel parameters θ, aleatoric variance σ2, and pseudo inputs

Z. The full set is defined to be Θ , {θ, σ2,Z}. Unlike prior sparse approximations

which were based on rejection sampling, our approximation has the benefit of being

differentiable in its hyperparameters, thereby permitting them to be precisely tuned

with gradient-based optimization. The marginal likelihood is Gaussian and given by

p(r|H,Z,Θ) =

∫
p(r|H,Z, q̃)p(q̃|Z)dq̃ = N (r|0,Q + σ2I + Krq̃K

−1
q̃q̃ Kq̃r). (5.12)

Instead of maximizing (6.9) directly, we use its logarithm, L(Θ) , log p(r|H,Z,Θ).

Full details of the gradient computation are provided in the appendix.

Overfitting is an important consideration when optimizing hyperparameters of

GP models. This occurs when the predictive variance collapses around the training

data, and it can weaken the representation’s ability to generalize to unexperienced

settings. Overfitting can be prevented by adding a regularization term to L(Θ) and

penalize parameters with high magnitude.



64

5.3.3 Policy Improvement with Sparse GP-Sarsa

Defining the approximate value function to be the predictive mean q̂(s, a) = q̃(s, a),

Algorithm 7 is can be used to update a policy. A learner gathers experience online and

updates its representation of the predictive moments. These are subsequently used

to update the policy with the current representation. For instance, a robot learning

to navigate may consider the ε-greedy policy that returns the action maximizing the

predictive mean with probability 1− ε.

Algorithm 7 On-policy Improvement with SPGP-Sarsa
1: for t = 1, 2, · · ·T do

2: Observe s, a, r, s′, a′ from p(·|s, a) and π(·)

3: q̂(s, a), σ̂2
q (s, a), r,H ←SPGP-Sarsa(s, a, r, s′, a′, r,H,Z).

4: Update policy with q̂(s, a) and σ̂2
q (s, a).

5: if t mod Tfit = 0 then

6: Θ← arg maxΘ′ L(Θ′)

Our proposed RL algorithm interleaves hyperparameter optimization into the

online learning process. In comparison to GP-Sara, which fits |Θ| parameters, our

proposed algorithm fits an additional m d-dimensional variables. To reduce the

computational burden of tuning these variables, our algorithm only optimizes every

Tfit steps The frequency which optimization will be useful depends on how well H and

Z support the posterior distribution.

5.4 Related Work

GP regression has been applied to RL in several contexts. Algorithms based on GP-

Sarsa are most relevant to our work (Engel et al., 2003, 2005; Engel, 2005; Engel et al.,

2006). Engel et al. (2006) uses this to control a set of high-dimensional manipulators,
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which emulate an octopus arm. Others have applied GP regression to the value

function while ignoring sequential correlation of the observation process (Deisenroth

et al., 2009; Rasmussen & Kuss, 2004).

Prior approximations to the GP posterior used rejection sampling (Csato &

Opper, 2002; Engel et al., 2003, 2005; Jakab & Csato, 2011) so their predictions never

cost more than tm2 operations, where m� t. Besides discarding potentially useful

information, rejection sampling can interfere with hyperparameter optimization by

causing sharp changes to appear in the marginal likelihood. Unlike these methods,

our approximation is continuous in the hyperparameters, which makes it amenable to

gradient-based optimization.

The state-of-the-art approximation of the GP-Sarsa posterior uses a low-rank

approximation to the full covariance matrix: Kqq ≈ AK̃−1A>, where A is a projection

matrix (Engel et al., 2005). Before adding new data to the active set, Low Rank

GP-Sarsa checks if new samples increase the conditional covariance by a desired error

threshold, ν.

5.5 Empirical Results

Here, we empirically verify several prior claims. The first is that SPGP-Sarsa permits

data-efficient policy evaluation while learning to navigate. Furthermore, we test

whether our proposed algorithm for policy improvement can be applied to a physical

underwater robot. All experiments use the covariance function:

k(si, ai, sj, aj) = σf exp [−0.5(∆>`∆)],

where ∆ , (si − sj, ai − aj), and ` is a diagonal matrix of length scales.
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5.5.1 Approximation Quality of Sparse GP-Sarsa

In Figure 5.2, the approximation quality of SPGP-Sarsa is examined as a function of

the number of pseudo inputs m. Approximation quality is measured with the ratio of

sparse-to-complete log-likelihood, Lsparse(m)/Lexact. As m increases, and the pseudo

inputs are placed at the maximum likelihood locations, they begin to coincide with

observed history H. Although more pseudo inputs improve the approximation and

eventually match the exact predictive posterior, the approximation starts to lose its

computational benefit.

5.5.2 Approximation Adjustability of Low-rank GP-Sarsa

In Figure 5.4 the approximation adjustability is recorded as the amount of experience

accepted by the algorithm as a function of the error parameter ν which tunes the

algorithm’s sparsity. Results show the adjustable range can be limited to only extreme

amounts of data retention or rejection.

Retaining an excessive amount of data reduces the computational benefit of

the low-rank approximation. Conversely, rejecting too much data is counterproductive

when very little arrives, particularly in an underwater robotics setting.

5.5.3 Learning Navigation Policies in Simulation

This experiment considers the problem of learning to control a simulated robot to a

goal point. It compares learning performance for three environments, whose dynamics

model the classic Mountain Car (Sutton & Barto, 2018), a planar autonomous surface

vehicle (ASV), and an autonomous underwater robot (AUV). We ask whether our

proposed sparse approximation can realize the same asymptotic performance as the

exact solution, and we additionally compare this to Low-rank GP-Sarsa, the best
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Figure 5.2: SPGP-Sarsa likelihood disparity
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Figure 5.3: Low Rank Sarsa rejection statistics

Figure 5.4: Visualizing the effect of parameter changes on approximation
quality: Figure 5.2 shows how the inclusion of more pseudo-inputs improves approx-
imation quality, and how optimizing their locations is additionally beneficial. We
fixed a synthetic dataset of 100 samples from the prior, N (0,Kqq). As a reflection
of quality, we uniformly sampled subsets of the data, computed the log likelihood
with SPGP-Sarsa, both before and after optimization, and normalized it by the log
likelihood of the full set. Boxplots were computed for 100 random subsets. Figure
5.3 shows how the low-rank method cannot always induce sparsity. We vary the error
threshold, ν, and plot the percentage of samples Low Rank Sarsa retained from 100
random trajectories. Trajectories from the Mountain Car system (top), and prior,
N (0,Kqq) (bottom) are shown.
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Figure 5.5: SPGP-Sarsa replicates value functions with a small active set:
Using the same covariance parameters, we plot value predictions from GP-Sarsa (left)
and SPGP-Sarsa before (center) and after (right) pseudo-input optimization. With
only a 5× 5 matrix inversion, SPGP-Sarsa nearly replicates the true value landscape,
while GP-Sarsa used a 302× 302 inversion. The pseudo inputs (red crosses) moved
beyond plot boundaries after optimization. A sample trajectory is shown at right.
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Figure 5.6: Learning performance during policy improvement: We plot average
total reward over 100 episodes, along with one standard deviation. In each case, SPGP-
Sarsa performs as well as GP-Sarsa; Low Rank Sarsa is the least optimal, and all
policies exhibit considerable variance.
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rejection-based sparse approximation.

Data in Figure 5.6 provide two pieces of information. All the algorithms converge

with a relatively small amount of data: in around fifty episodes with . These results

are consistent with prior work by Engel et. al(Engel et al., 2006), where GP-Sarsa was

applied to control a high dimensional octopus arm having 88 continuous state variables

and 6 action variables. Performance differences between the two approximate methods

are due to their approximation quality (Figure 5.4). As expected, SPGP-Sarsa is

able to learn on par with the exact method, because it can replicate the predictive

posterior better than Low Rank Sarsa.

The experiment was designed with several aspects held fixed. First, the learner

used an ε-greedy policy with ε = 0.1 to experience the environment in 100 episodes.

Hyperparameters that control the degree of sparsity between SPGP-Sarsa and Low

Rank GP-Sarsa were both set to induce fifty percent sparsity over the maximum

amount of data the learner could experience – allowing for a fair comparison between

both algorithms. Finally, the pseudo inputs were initialized randomly.

Mountain Car: The Mountain Car is a canonical RL problem, where an underpow-

ered dynamical system must learn to exploit momentum to reach the crest of a hill.

The environment state is given by a position and velocity, (x, ẋ), where x ∈ [−1.2, 0.6],

and ẋ ∈ [−0.07, 0.07]. Rewards are R = ε− x, with ε ∼ N (0, 0.001), until the goal is

reached, where R = 1. Episodes start at (−0.5, 0.0), and the goal is located at 0.6.

We let m = 5, ν = 0.1, and learning evolve over 50 transitions.

Autonomous Surface Vehicle The second environment simulates a planar ASV,

which has been considered in prior RL research (Ghavamzadeh et al., 2016; ?). The

robot must navigate within 10m of (50m, 50m) using 100 transitions. States contain
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position x, y, heading θ, and heading rate θ̇. The speed is held constant at V = 3 m/s,

and the angular rate ω ∈ [−15◦/s, 15◦/s] controls the robot through the equations of

motion

xt+1 = xt + ∆V cos θt, yt+1 = yt + ∆V sin θt,

θt+1 = θt + ∆θ̇t, θ̇t = θ̇t +
∆

T
(ωt − θ̇t).

We use time steps of ∆ = 1.0s, and a T = 3 step time delay for the command ω to

be realized. The delay models resistance of surface currents and actuator limitations.

Rewards are assigned with R = Rmin−(Rgoal−Rmin) exp(−d/δ)+ε, where Rmin = −1.0,

Rgoal = 10.0, ε as before, d = ||xgoal−x||, and δ = 10. The policy was linear: ω = Kωeθ,

where eθ = arctan [(50− y)/(50− x)] − θ. Kω was updated with a line search, to

maximize the first moment of the posterior. We selected ν = 0.1 and m = 50.

Autonomous Underwater Vehicle For the third system we consider a common

AUV design with differential control. Actions command forward acceleration v and

turn rate ω through port and starboard actions. The dynamics are an extension of

the ASV with the additional dimension, Vt+1 = Vt + ∆vt. The policy uses Fourier

basis functions, with eθ defined as before, and er = ||xgoal − x||:

v = Krer cos(eθ), ω = Kr cos(eθ) sin(eθ) +Kθeθ.

These map to actions through vt = Kv(aport,t + astar,t) and ωt = Kw(aport,t − astar,t),

where we let Kv = Kw = 1. Policy updates select parameters Kr and Kθ to maximize

the value posterior mean, found through a 100× 100 grid search. Learning occurs over

100 episodes of 200 transitions, with ν = 5 and m = 50.
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Figure 5.7: Underwater robot navigation: The robot (top-left) learns to navigate
between two rings (bottom-left). With only a demonstration of eight transitions,
SPGP-Sarsa recreates a near-optimal value (top-right) and policy (bottom-right).
Robot trajectory and the pseudo inputs are plotted in gold.

Results: Results in Figure 5.6 show that SPGP-Sarsa achieves the same asymptotic

performance as the exact algorithm, GP-Sarsa, and it outperforms the alternative

sparse approximation which is based on rejection sampling.

5.5.4 Learning to Navigate on a Physical Underwater Robot

The final investigation applies SPGP-Sarsa to a physical BlueROV robot using ob-

servations of planar position and velocity. The purpose is to verify whether results

from our simulation study transfer to a physical domain, where the robot learned to

navigate between two waypoints.

The robot’s sensory information comes from a Doppler velocity log, whose

estimates drift on the order of 1m every 1-2 min. This bounded the number of

transitions the agent could experience, before its sensory information turned into noise

and, furthermore, it made learning over multiple episodes impractical. Disturbances
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from a data tether introduced additional noise in the robot’s starting position, which

sometimes made the robot drift in all degrees of freedom. The robot remained at a

fixed depth throughout learning.

The robot’s speed was constrained to facilitate accurate localization. Its actions

were defined with a finite number of pulse-width-modulated commands to its thrusters.

In particular, it was allowed to yaw and translate forward and backward for a fixed

amount of time.

Results: Figure 5.7 shows the value function and greedy policy learned after only

eight transitions. As the highest value is concentrated around the goal, we conclude

that SPGP-Sarsa was able to recover a useful value function and policy. The experiment

was repeated twenty times and the average policy update time took 0.013± 7 · 10−4s

with a 2.8GHz i7 processor. We achieve only a modest improvement in prediction

time, since t = 8, and we use m = 2 pseudo inputs. Despite this fact, our results

confirm that efficient robot learning is possible with SPGP-Sarsa.

5.6 Discussion

There are several key assumptions underpinning our results. To guarantee the likelihood

can be factored, we needed to assume that transitions are uncorrelated. Had we

modeled serial correlation in the noise process, ε would be distributed with a tridiagonal

covariance (Engel et al., 2005), which cannot be factored directly. It is possible to

obtain a factorable model by applying a whitening transform. However, this changes

the observation process to Monte Carlo samples, which are known to be noisy (Sutton

& Barto, 1998). Under our simpler set of assumptions, we obtain an efficiently-

computable, sparse representation of the value posterior that is amenable to smooth

evidence maximization.



74

This work presented an algorithm that supports learning navigation policies in

low-data regimes. We considered the class of GP-Sarsa algorithms. These algorithms

can be more data-efficient than applying the standard Bellman operator, because

GP-Sarsa updates are based on probabilistic conditioning, which incorporates new

experience in a single step. SPGP-Sarsa was proposed as a sparse approximation to

GP-Sarsa, which can be more accurate than rejection-based approximations. Our

proposed algorithm was shown to be effective in simulation and on a physical marine

robot with a highly-constrained sensory system. Despite these challenges, SPGP-Sarsa

was still able to learn a useful value function. In closing, we believe our results highlight

the efficiency of SPGP-Sarsa as a marine robot learning method.
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Chapter 6

Handling Heteroscedastic Uncertainty in the Observations

Model-based algorithms for reinforcement learning can provide a data-efficient way to

learn control policies for robotic systems (Deisenroth & Rasmussen, 2011; Hester et al.,

2010; Ko et al., 2007). These algorithm learn a transition model of the environment

to predict the next state and reward, then use the model to perform simulation-based

policy evaluation and updates (Hester & Stone, 2011). Model-based algorithms can

sometimes be more data efficient than their model-free counter parts, by reducing

the number of costly physical learning experiences. Model-based algorithms have

proven effective in environments that exhibit constant noise properties. However,

they have never been extended to environments for which the aleatoric uncertainty is

heteroscedastic, i.e. its noise varies throughout the state-action space. Many sensors

used for underwater robot localization exhibit heteroscedastic noise (Figure 6.1).

Failing to capture these effects in the RL process may result in inaccurate policy

evaluation and poor policy updates.

To address these issues, this chapter introduces a new transition model to

represent heteroscedastic noise using hierarchal Gaussian process regression. We

show how to use the algorithm for indirect policy evaluation, whereby samples of

the return are obtained with rollouts from the model. The framework is applied to

three environments, where a simulated robot needs to navigate to a goal point. Our

results demonstrate a significant performance improvement and reduction in model

bias when using our framework over a standard model that assumes constant noise.

Furthermore, our results indicate that model learning can be done efficiently, using

reasonable amounts of data in short-horizon settings.
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Figure 6.1: Heteroscedastic uncertainty from underwater localization sensor:
Position samples from an ultra-short baseline (USBL) acoustic positioning sensor
are shown. The sample’s coordinates are relative to the sensor. The data reflects
the position of an underwater robot holding position at three different locations in a
shallow-water environment.
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Figure 6.2: Graphical models for a standard (left) and heteroscedastic (right) Gaussian
Process.
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6.1 Transition Models from Hierarchal Gaussian Process Regression

Heteroscedastic models consider input-dependent noise. Suppose x is some vector of

inputs, and y is a corresponding output from some observation process. Then het-

eroscedastic models can follow the form y = f(x)+ε(x), where ε(x) ∼ N (0, exp(g(x))).

Here, there are two latent functions, f and g, to describe the output dynamics and

change in observation noise respectively. Figure 6.2 illustrates the model. By placing a

Gaussian process prior over the two latent functions and using a maximum likelihood

assumption on the noise variables, one can derive equations for the predictive moments

of y (Goldberg et al., 1998). In what follows, we describe how to apply this model to

the transition dynamics of a Markov decision process, to predict the next observation

vector.

6.1.1 First-level Observation Model

This work considers distributional transition models whose moments are used to

generate expected samples of experience. The model places a Gaussian process prior

over a latent, nonlinear function that generates the next observation ot+1 = f(ot, at),

where f ∼ N (0,Kf ). The learner trains this model using samples1 (ot, at,ot+1) from

its history of experience H , {(ot, at)}Tt=1, up to time T ∈ N. Since observations

are multi-dimensional, the learner considers n such models oit+1 = fi(ot, at), for each

component i = 1, · · · , n of ot+1 , (o1
t+1, · · · , ont+1)>.

Predictions of fi are influenced by two sources of noise. Constant transition

noise is modeled with Kfi ∈ RT×T , where its elements are defined as [Kfi ]lj ,

kf(ol, al,oj, aj), for l, j ∈ {1, · · · , T}. The heteroscedastic noise is modeled with

a diagonal matrix Kgi , diag(kgi), whose elements are the exponentiated predic-
1This work applies to robotics problems where the reward function is given to the learner.
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tive mean of an additional latent function kgi(ot, at) , exp(gi(ot, at)), and kgi ,

(kgi(o1, a1), · · · , kgi(oT , aT ))>. This model structure was originally proposed by Gold-

berg et al. (1998).

Given the covariances and a vector of outcomes for the i-th observation o′i ,

(oi2, · · · , oiT+1)>, the learner predicts the next observation using the predictive moments

of the posterior distribution over f . Each component model has predictive moments

fi(o, a) = k>fi(Kfi + Kgi)
−1o′i, (6.1)

σ2
fi

(o, a) = kfi(o, a,o, a) + kgi(o, a)− k>fi(Kfi + Kgi)
−1kfi . (6.2)

Here, we define [kfi ]t , kfi(ot, at,o, a) for t = 1, · · · , T .

To compute the predictive posterior over f , we condition on the history of

observation-action pairs H and o′i, then we typically marginalize any additional latent

variables. Candidates for marginalization in this model are the noise variables kgi

predicted from previous experience and a prediction kg∗i , kgi(o, a), for some inputs:

p(f |o, a,H,o′i) =

∫
p(f |o, a,H,o′i, kg∗i , ,kgi)p(kg∗i ,kgi |o, a,H,o

′
i)dkg∗i dkgi . (6.3)

Unfortunately, marginalization is not analytically possible with this model. The

presence of the exponential on gi(o, a) causes the distribution to become non-Gaussian.

To obtain a solution, we must appeal to an approximation. Previous approxi-

mations to this have included MCMC (Goldberg et al., 1998), variational inference

(Saul et al., 2016; Titsias & Lázaro-Gredilla, 2011), Laplace approximation (Vanhatalo

et al., 2013), expectation propagation (Hernández-lobato et al., 2014), and maximum

likelihood (Kersting et al., 2007). In robotics, the uncertainty of a sensor is usually

concentrated around its mean. Therefore, a maximum likelihood assumption can
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provide a fair approximation of the true posterior in these cases.

6.1.2 Second-level Heteroscedastic Noise Model

We proceed under the maximum likelihood assumption described by Kersting et al.

(2007), where the approximate posterior is defined by

p(f |o, a,H,o′) ≈ p(f |o, a,H,o′i, k∗g∗i , ,k
∗
gi

), (6.4)

(k∗g∗i , ,k
∗
gi

) , arg max
kg∗
i
,,kgi

p(kg∗i ,kgi|o, a,H,o
′
i). (6.5)

Here, the latent noise variables are replaced by their maximum-likelihood realizations.

To compute the predictive posterior, we condition gi ∼ N (0,Khi) on the history

H and noise observations zi using the covariance Khi , and without considering any

additional aleatoric uncertainty. In practice, however, adding noise to Khi can increase

numerical stability during inversion. The predictive moments of the noise model are

gi(o, a) = k>hiK
−1
hi

zi, (6.6)

σ2
gi

(o, a) = khi(o, a,o, a)− k>hiK
−1
hi

khi . (6.7)

In Equation 6.6, the log variances zi are treated as observed variables. However,

variance is a latent variable in our setting which needs be estimated from data. To

obtain estimates, we use the empirical variance with samples from the posterior over

f (Kersting et al., 2007). First, we draw M posterior samples, assuming that each

draw is an independent observation of the noise-free observation process. Then using
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the noisy targets o′i, the t-th variance observation is estimated with

zti ≈ log

(
1

2M

M∑
j=1

(oti − f ji )2

)
. (6.8)

This implicitly assumes that f ji and oti are observed with equal likelihood for t =

1, · · · , T . For large enough M , this estimate will minimize the average distance

between the predictive distribution and the observations o′i.

6.1.3 Optimizing Hyperparameters

As the learner experiences new transitions, it updates the transition model by opti-

mizing its internal hyperparameters Θ (Hester & Stone, 2011). The model’s hyperpa-

rameters include those in its covariance functions, kfi and kgi .

For both the observation and noise process, the model uses an exponentiated

quadratic covariance function:

k(x,x′) , σ2 exp
[
−0.5(x− x′)>L(x− x′)

]
.

Here, L is a diagonal matrix with elements `−2
f,1, · · · , `−2

f,n. Each `f,i represents a

characteristic length scale of the i-th observation-action component, and σ2
f modulates

the aleatoric variance of the output. The complete parameter set for each process

includes their own variables {`f,1, · · · , `f,n, σf}, for each output dimension. Generally

speaking, the choice of covariance function is problem specific and typically reflects

any prior knowledge concerning the correlation of outputs. See Rasmussen & Williams

(2005) for a broader treatment of this subject.

We use an approximate form of evidence maximization starting from the
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marginal likelihood

p(fi|H,o′) =

∫
p(fi|H,o′i,kgi)p(kgi |H,o′i)dkgi .

Since we are unable to marginalize kgi , we invoke the maximum likelihood approxi-

mation again. The approximate likelihood, p(fi|H,o′,k∗gi), provides a lower bound on

the exact marginal, since our optimization procedure (Algorithm 8) cannot guarantee

that k∗gi is a global maximizer. We obtain our optimization objective by taking the

logarithm of the approximate likelihood:

log p(fi|H,o′,k∗gi) = −T
2

log(2π)− 1

2
log |Kfi + K∗gi | −

1

2
y>(Kfi + K∗gi)

−1oi. (6.9)

Our complete optimization procedure is outlined in Algorithm 8. It follows

the Expectation-Maximization algorithm described by Kersting et al. (2007). The

expectation step estimates latent variances z, and the maximization step maximizes

the hyperparameters. We used a conjugate gradient optimization to fit the data.

Evaluating the likelihood costs O(T 3) operations: the same as standard GP regression.

The precise runtime of our proposed learning algorithm depends on the convergence

tolerance ε ∈ R and the maximum likelihood procedure. As with the standard EM

algorithm, this procedure is not guaranteed to converge. However, we found that it

performs reliably well in practice.

6.1.4 Model Improvement

6.2 On Policy RL with a Learned Transition Model

Given the current observation and action, the transition model (6.1) provides a way

to generate a sequence of predicted observations which can be used in conjunction
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Algorithm 8 Heteroscedastic Model Update
1: input: Θ, H, o′, z, M
2: repeat for all i = 1, · · · , n
3: for all (ot, at) ∈ H do
4: {f 1

i , · · · , fMi } ∼ N (fi(ot, at), σ
2
fi

(ot, at))

5: zti ← log
(

1
2M

∑M
j=1(oti − f ji )2

)
6: zi ← concatenate(z1

i , · · · , zTi )
7: Update Θi to maximize (6.9) with H, o′i and zi.
8: until difference in subsequent Θi is smaller than ε.
9: output Θ, z

with a reward model to compute sample returns. From the sample returns, policies

can be evaluated and improved to maximize the expected return.

The learning system parameterizes a policy π with the vector θ ∈ Rd and

optimizes their values to maximize the expected return. For each update, policy

parameters are adjusted in steps of β ∈ R toward regions of increasing expected return.

Algorithms such as these are known as policy optimization algorithms (Sutton &

Barto, 2018).

θj+1 ← θj + βj∇θE[Gt]. (6.10)

Provided that rewards are bounded and the learning rate βj is chosen from a Robbins-

Monroe sequence, policy gradient methods are guaranteed to converge to a local

optimum. By computing these numerically, we can support a large class of policies,

even those with discontinuous parameterizations.

For d policy parameters, the partial derivative ∂
∂θj

can be estimated by per-

turbing the j-th parameter θj by an amount ∆θj and computing the resulting change

in the return ∆Gj = η(θ + ∆θj) − η(θ − ∆θj). Sample returns come from model

rollouts, where ∆θj is an elementary vector scaled by ∆θj in the j-th dimension. A
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single gradient sample comes from computing these perturbations for every parameter

dimension, and the result is averaged over m gradient samples total. Gradients are

estimated with ∇θE[G] ≈ 1
2m∆θ

∑m
i=1 ∆Gi.

Algorithm 9 describes the top-level policy update algorithm. For each update,

N training trajectories are drawn from the environment to create the history H,

o′. These are used to update the transition model with Algorithm 8. The updated

model is subsequently used to estimate the policy gradient and update the policy’s

parameters θ. Policy updates are made with Algorithm 10. the number of policy

updates U , trajectory sample size N ,

Algorithm 9 Heteroscedastic Policy Gradient
1: input: β1:U , T , U , N , M , Θ, θ,
2: for u = 1, · · · , U do
3: Initialize H ← ∅, o′i ← ∅, z.
4: for j = 1, · · · , N do
5: o1 ∼ p1(·)
6: H ← H∪ {(ot, at) : ot+1 ∼ p(·|ot, at), at ∼ πθi ∀ t = 1, · · · , T}
7: o

′u
i ← concatenate(oi2, · · · , oiT+1) for all i = 1, · · · , n.

8: o
′
i ← o′i ∪ {o

′u
i } for all i = 1, · · · , n.

9: Θ, z←Update Model(Θ,H,o′, z,M)
10: ∇θE[G]← Model-based Policy Gradient(p1, r,Θ,H,o′, z, πθ, T, γ)
11: θu+1 ← θu + βu∇θE[G]

12: return θ, Θ, o′, z

Algorithm 10 Model-based Policy Gradient
1: input: p1, r,Θ,H,o′, z, πθ, T, γ
2: for i = 1, · · · ,m do
3: for j = 1, · · · , |θ| do
4: G(θ + ∆θj) =

∑T
t=0 γ

trt from rollout
5: G(θ −∆θj) =

∑T
t=0 γ

trt from rollout
6: ∆Gj ← G(θ + ∆θj)−G(θ −∆θj)

7: ∆Gi ← concatenate(∆G1, · · · ,∆G|θ|)
8: return 1

2m∆θ

∑m
i=1 ∆Gi
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6.3 Related Work

Others have also employed GP regression to represent the transition model in RL

(Deisenroth & Rasmussen, 2011; Ko et al., 2007; Nguyen-tuong et al., 2009). Deisenroth

& Rasmussen (2011) present an alternative method to approximate the expected

return, and they obtain a closed-form result by modeling the randomness of transition

perturbations. Transitions are treated as independent and Gaussian, and moment-

matching is applied to obtain expressions for at every time step. Our transition model

can be contextualized more generally as a Chained Gaussian Process using an identity

and a log link function with two latent processes (Saul et al., 2016).

6.4 Empirical Results

Here, two experiments are presented which study how the proposed transition model

impacts the RL process. The first experiment addresses the question of sample

efficiency in the context of model learning. The second experiment examines the

full learning system and its ability to learn a navigation policy in the presence of

simulated heteroscedastic noise. Additionally, the second experiment compares learning

performance to a similar model-based algorithm that ignores heteroscedastic noise.

Both of these experiments provide positive support to the hypothesis that there

are environments where an RL system can improve its performance by representing

aleatoric uncertainty.

Inspired by the sensing challenges faced by common underwater robots, the

experiments consider three simulated environments. In particular, we considered a two

degree-of-freedom (DOF) point robot (Point), a three DOF under-actuated surface

vehicle (Ship), and a six DOF underwater vehicle (AUV). Each environment emits
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observations with spatially-varying noise according to the function

ε(x) = αa exp (αxx
>x) · δ, (6.11)

where x denotes some generic input of spatial variables, and δ ∼ N (0, 1). This is

intended to simulate the noise profile of a fixed usbl acoustic beacon (Figure 6.1). In

each environment, parameters are set to αa = 1 and αx = 10−4.

Experiments share several other commonalities. Rewards are assigned with a

linear quadratic function r(o) = (o− ogoal)
>Q(o− ogoal), where Q = −0.1I. These

encourage the system to navigate to the goal with a shortest Euclidean path in

observation space. Returns are undiscounted (γ = 1), and T is specified differently for

each environment. Sample trajectories were generated uniformly from the state space

using the current policy with M = 100. Model updates are terminated either when

subsequent parameters differ less than 10−4 in terms of the Euclidean norm, or after

1000 iterations.

6.4.1 Batch Size Ablations

This experiment investigates how model accuracy changes as the batch size N is

increased. With the time horizon fixed at T = 20 steps, the experiment varies

N ∈ {1, · · · , 20}. Accuracy is measured as the mean-squared error between the

model’s predictions and a fixed trajectory, which is known a priori and comes from

the true dynamics. The model is updated with Algorithm 8 until the convergence

criteria are met.

Figure 6.3 shows the results using experience from each environment. In

each case, the target tolerance of 10−4 was reached within about 10 trajectories.

Convergence remains temporally stable, and this result is consistent with the intuition
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Figure 6.3: Ablations of batch size: The mean-squared error is shown for obser-
vation components of planar position whose uncertainty varies heteroscedastically
(horizontal: red; vertical: blue). Batch size is varied for N = 1, · · · , 20 trajectories of
length T = 20. Results are averaged over 10 independent trials and show reasonable
convergence after about ten trajectories.
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that more training data produces more accurate predictions. We observed the point

robot trajectories were highly dispersed in its observation space, and this increased its

data requirements for the given correlation range.

6.4.2 Learning Navigation Policies in Simulation

Planar point vehicle: Here the true transition dynamics are linear. The learning

system experiences trajectories of T = 20 time steps with ∆ = 0.5s. Starting from

(40, 40), the system learns to navigate to the goal position (100, 100). States are

fully-observable, four-dimensional vectors (x, ẋ, y, ẏ) containing positions x, y and

velocities ẋ, ẏ. Two actions (ax, ay) provide control with a linear policy a = kao for

each action, where ka is a weight vector. The environment dynamics are

xt+1 = xt + ∆ẋt, yt+1 = yt + ∆ẏt,

ẋt+1 = ẋt + ax ẏt+1 = ẏt + ay.

Results are shown in Figure 6.4 and discussed in Section 6.4.2.

Underactuated Ship Steering: In many cases, robots do not have full controlla-

bility of each dynamic degree of freedom. One example considered here is a planar

autonomous surface vehicle, inspired by Ghavamzadeh et al. (2016). The learning

system experiences trajectories of T = 40 time steps with ∆ = 0.5s. Starting from

(40, 40), the system learns to navigate to the goal position (100, 100). The simulated

vehicle moves at a constant speed of V = 5 m/s and asserts control by setting its

angular rate ω ∈ [±15◦/s]. Fully-observable states (x, y, θ, θ̇) contain positions x, y,
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(a) Point Robot (b) Ship

Figure 6.4: Heteroscedastic transition models outperform naive alternatives:
We plot the evolution of cumulative reward for a point robot (Figure 6.4a) and a Ship
(Figure 6.4b). The experiments were repeated with N = 5, 10, 20 sample trajectories
and averaged over 10 independent trials. The standard Gaussian process model
(bottom row) suffers greatly from bias and produces suboptimal behavior.
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(a) 50 Episodes (b) 100 Episodes (c) 150 Episodes (d) 200 Episodes

Figure 6.5: Trajectory evolution with policy improvement: Sample trajectories
are shown from the point robot (orange) and ASV (purple) as their policy improves.
Initially, the path is suboptimal. Learning occurs in the presence of exponentially
worsening noise whose severity is indicated by the color gradient.

heading θ, and yaw rate θ̇. The dynamics are

xt+1 = xt + ∆V cos θt, yt+1 = yt + ∆V sin θt,

θt+1 = θt + ∆θ̇t, θ̇t+1 = θ̇t +
∆

τ
(ωt − θ̇t).

The model includes a τ = 3 step time delay for the command ω to be realized. This is

intended to model delays from surface currents and actuator limitations. Learning

rates remained fixed, and actions are chosen with a linear policy ω =
∑4

i=1 w>φi(s)

using four basis tiles φi split around the goal position.

Results: Figure 6.4 shows the average return of an algorithm that learns with our

proposed model and another model-based algorithm that ignores heteroscedastic noise.

Our proposed algorithm achieves convergence within 200 episodes, and outperforms

the baseline algorithm. Consistent with the batch size ablations, as N increases

so does the rate of convergence. Training with more sample trajectories reduces

model bias and produces more accurate gradient estimates. Conversely, ignoring

heteroscedastic effects compounds model bias, which can lead to divergence from poor

policy evaluations. The evolution of policy improvement can be visualized in the
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shortening of sample trajectories shown in Figure 6.5.

Autonomous Underwater Vehicle: Physical underwater vehicles operate in three

spatial dimensions, and they often have six degrees of freedom. In this experiment, a

six DOF underwater vehicle is simulated over a horizon of T = 100 steps of ∆ = 0.2s.

With trajectories of this length, model bias becomes a significant concern, because

new data can fall outside the model’s correlational range and into the extrapolation

regime. The environment we consider has a twelve-dimensional fully-observable state,

containing position, x, y, z, orientation φ, θψ, and body rates u, v, w, p, q, r. The

control system allows for forward acceleration af ∈ [±0.5 m/s2], vertical acceleration

av ∈ [±1 m/s2], and heading acceleration ad ∈ [±0.5 rad/s2]. The system is under-

actuated, since it cannot instantaneously control sway, bank, or attitude. The position

rates evolve according to the equations of motion

u̇t+1 = a1vtrt + a2ut + a3ut|ut|+ af,

v̇t+1 = b1utrt + b2vt + b3vt|vt|,

ẇt+1 = c1wt + c2wt|wt|+ av.

Yaw motion is described by ṙt+1 = d1rt+d2rt|rt|+ad. Values used for all the numerical

constants can be found in Eidsvik (2015). Starting from (40, 40), the system learns to

navigate to the goal position (100, 100). Forward and vertical actions are computed

with a linear policy, and heading actions are computed with ad =
∑4

i=1 wiφi(o), using

the same features φ as the ASV problem.

Figure 6.6 shows the return averaged from 10 independent trials of data. Due

to the large scale of variation, data is shown on a log scale. Both model types perform

poorly when making long-range predictions. These results make intuitive sense; in the
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Figure 6.6: Model training and Underwater Robot results: The average return
is shown as a simulated underwater vehicle learns to navigate. Initially, our algorithm
achieves good performance. However, this eventually degrades as more bias enters the
process. This leads both to experience poor asymptotic performance.

extrapolation regime, correlations are low. Thus, model bias has a more significant

effect.

6.5 Discussion

This chapter presented a new model-based RL algorithm that uses hierarchal GP

regression to model heteroscedastic transition dynamics of robotic systems. Our

experimental results showed that model learning can be done with reasonable amounts

of data for common simulated marine robotic systems.
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Chapter 7

Summary and Future Work

This dissertation argues that

reinforcement learning algorithms that represent and manage uncertainty

can be used to broaden the applicability of a robot decision making system.

The final chapter summarizes the contributions that support this statement. Addi-

tionally, it describes some potential directions for future research.

7.1 Summary of Contributions

Chapter 3 presented an RL system that represents the aleatoric uncertainty of returns

and uses that information to reduce exposure to unwanted randomness from the

environment. A new algorithm was presented that learns return distributions using

the optimization framework of Wasserstein gradient flows. This framework allows one

to guarantee convergence of the return distribution’s first and second moments, which is

a necessary condition to establish stochastic dominance in the second order (Fishburn,

1980). Second order stochastic dominance was presented as a distributional relation

that could be used to select actions, such that the system’s expected performance

is preserved, and its exposure to risk is reduced. Before this work, SSD had not

appeared in the RL literature; systems typically employed conditional value at risk

(Artzner et al., 1999). The experimental results from this chapter showed that our full

system, which includes the WGF learning algorithm and the SSD decision policy, could

broaden the class of environments to which RL systems can be applied. For these

environments, data showed that an RL system’s expected performance can be preserved
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when compared to the uncertainty-agnostic greedy policy used by conventional systems.

These results were demonstrated for tabular and for moderate-scale state spaces which

require function approximation. In comparison to the single risk level of conditional

value at risk, the proposed SSD policy was shown to explore more consistently, because

it considers multiple risk levels in its evaluation of uncertainty.

Despite the advances of Chapter 3, its results apply under particular conditions

that can sometimes be unrealistic for robotic systems. For example, the SSD policy

requires the environment to have multiple paths of equal expected return; otherwise,

its actions are identical to the standard greedy policy. Even when this precondition

occurs, it can be challenging to satisfy within physically-attainable data regimes (e.g.

about 105 transitions), and when computations involve floating point numbers of

stochastic data. Many environments relevant to robotics will seldom contain multiple

trajectories with strictly equal values (i.e. zero action gap). In reality, action gaps

may be close, but they are never exactly equal. Still, the principles of Chapter 3 are

potentially beneficial for robots seeking reliable and optimal actions.

Chapter 4 addressed some of these challenges and extended the line of work in

several ways the previous chapter did not consider. The chapter focused on RL systems

aimed at mobile robots learning to navigate. A new algorithm was presented that learns

return distributions incrementally online and without physically-implausible episodic

resets. To support sensors with high-dimensional output, samples approximating

return distributions were represented as linear functions of a feature vector. Before

this work, only tabular representations had been applied to the online setting; most

work treated the offline setting with deep neural networks (Dabney et al., 2017). In

choosing samples to be linear functions of features, the proposed algorithm gains

generality to handle observations of unknown structure. This can scale systems to

complex domains, where observation structure is unknown or difficult to embed through
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an inductive bias. For resource-constrained systems, linear representations permit their

computations to be highly parallelized for time-efficient online learning. Experimental

results demonstrated that the proposed algorithm was capable of handling a realistic

robot sensory stream, containing over one-hundred thousand dimensions of simulated

lidar information. The algorithm was applied to improve reliability of actions from

data experienced in an off-policy and continual manner; after transitioning under

the behavior policy for an undetermined amount of time, the learner switches to use

the target policy. After the goal has been reached, the learner would switch back

to the behavior policy and continue refining its actions based on new experience.

Unlike the conventional episodic paradigm, which requires the learner to be reset,

and doesn’t consider what happens after the goal is reached, the proposed learning

process encompasses a larger and more physically-plausible scope. Results showed the

system was able to reduce its exposure to uncertainty. Finally, the chapter presented

evidence showing that the proposed linear representation struggles to differentiate

its actions from the greedy policy, in comparison to an oracle tabular learner. These

results provide further support for the thesis statement, and they motivate future

work, which is discussed in the next section.

In contrast to the data regimes considered in Chapters 3 and 4, common sensory

streams from underwater robots produce much less data. In addition, these robots’

sensors can be highly prone to drift and struggle to provide consistent measurements

across learning episodes. Issues such as these make it challenging or altogether

infeasible to apply conventional RL algorithms to underwater robots.

Chapter 5 addressed the issue of on-policy evaluation in low-data regimes.

The chapter presented a Bayesian non-parametric regression algorithm for estimating

the expected return while representing the associated epistemic uncertainty. To

improve the algorithm’s online viability, the chapter proposed a sparse approximation
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based on the pseudo-input paradigm of Snelson & Ghahramani (2006). This uses

posterior moments, including a measure of epistemic uncertainty (i.e. the covariance),

to compress experience into manageable amounts with which to make predictions.

Evidence was presented showing learned navigation policies could control simulated

mobile robots. Additionally, evidence showed the algorithm could control a physical

underwater robot, while experiencing noisy and drifting acoustic sensory data. These

results imply the proposed algorithm may be applied to other robotic systems that

learn to make decisions with low amounts of data. This broadens the applicability of

robotic decision making systems that are difficult to model a priori, and whose sensors

preclude the application of conventional RL algorithms. In particular, data demands

of such systems may be drastically reduced using the proposed algorithm.

Another challenge faced by underwater robots is heteroscedastic uncertainty

affecting observations. Chapter 6 presented an algorithm to learn heteroscedastic

transition models. The algorithm was based on a hierarchal Gaussian process regression,

similar to Kersting et al. (2007), which leverages maximum likelihood assumptions to

make inference tractable. The chapter demonstrates how to integrate the proposed

transition model into a model-based algorithm for RL, using batches of trajectories from

which to learn. Experiments showed that by representing heteroscedastic uncertainty,

predictions made by the transition model were more accurate than models assuming

constant noise properties. In the data, this resulted in performance improvements

for several simulated robotic vehicles. In a broader context, the proposed algorithm

enables robots to apply RL in more settings: in the presence of heteroscedastic

observation noise.
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7.2 Discussion and Future Directions

The contributions of this dissertation offer several ways they could be extended. In

some cases, their results open up new research directions which did not exist before.

This section discusses a few possible avenues for future work.

7.2.1 Uncertainty, Robotics, and Continual Learning

Much RL research focuses on algorithms that experience data episodically. In simulated

environments, the episodic assumption has little bearing; it is straightforward to impose

resets programatically. However, episodes can often be unnatural for mobile robotic

systems, which require physical involvement whenever terminal conditions are met.

This dissertation showed that continual learning (Ring et al., 1994) can be a more

appropriate alternative, particularly in the case of self-driving vehicles (Chapter 4). In

this setting, a system is always learning, and it never resets. Many others in RL study

continual learning (Kirkpatrick et al., 2017; Kaplanis et al., 2019; Fedus et al., 2020).

Continual learning for mobile robotics could be very promising when combined with

uncertainty-aware decision making. Not only could this help robots more naturally

learn over longer periods of time, but it could reveal different settings in which to

study uncertainty.

7.2.2 Balancing Uncertainty and Approximation Error

The results of Chapter 4 provide evidence that SSD is difficult to identify under

function approximation. Based on this data, it is natural to wonder whether there

are other criteria with similar benefits that can be realized with less data. Here, at

least two strands of research can be geared toward robotics. In one case, the relation

between SSD and the ordering on moments could be explored – perhaps to define a
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new policy that tolerates small action gaps. This would presumably apply to a broader

class of environments, where small action-gaps exist; for instance, any roadmap where

two routes differ in length by less than a tolerance. In the other case, the distribution’s

accuracy could be studied with a goal of reducing false-negative SSD comparisons.

Supposing the false-negative errors were concentrated to a subset of sample estimates,

then a policy could be designed to remove or weight these appropriately. If excluding

erroneous samples could be guaranteed to still approximate the underlying random

variable well, then the false-negative rate would be reduced. In both cases, future

work would hope to show a new policy retains much of the SSD relation’s desired

behavior.

Instead of managing represntation error through the learner’s policy, it worth

investigating whether the error could be reduced directly, with a different representation

using nonlinear features. Convolutional features have proven effective for representing

spatial data that comes from cameras and other imaging sensors. Like many nonlinear

features, convolutional features often demand an abundance of experience to optimize:

often on the order of 108 transitions (Machado et al., 2018). In smaller domains,

nonlinear features from multilayer perceptrons have been effective using roughly

106 steps of experience (Schulman et al., 2017). However, both convolutional and

MLP features have predominately optimized offline, with batches of saved episodic

experience. Future work could explore algorithms for bringing these representations

to the online continual RL setting.

7.2.3 Improving Exploration with Epistemic Uncertainty

The work in Chapter 5 primarily focused on updating the posterior over a value

function and using the posterior’s mean for decision making and policy improvement.

In the same low-data settings this work considered, it could also be interesting to
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incorporate the predictive variance as a measure of the value function’s epistemic

uncertainty. This would allow the learner to identify and explore unknown states

in different and potentially-useful ways. For instance, the learner could apply the

principle of optimism in the face of uncertainty (Brafman & Tennenholtz, 2002). This

has been a useful strategy for incorporating epistemic uncertainty in RL, leading to

optimal exploration in tabular domains. Conversely, a learner could choose actions so

their outcomes are closer to what has been experienced in the past. Such approaches

have been shown to help when using model-based algorithms with limited capacity

(Abbas et al., 2020). Both approaches are expected to be useful in low-data regimes,

where the learner would like to weight its exploration with its prediction confidence.

7.3 Conclusions

This dissertation presented several reinforcement learning algorithms for representing

and managing uncertainty in robotic problem settings. Each algorithm was designed to

handle a specific kind of uncertainty. The algorithms for handling aleatoric uncertainty

used distributions to express the full spread of outcomes a learner could expect to

encounter. These were used to inform more predicable decision making, and they

were shown to be applicable to realistic robot sensory streams. Other algorithms were

designed to handle epistemic uncertainty in the expected return. These algorithms

were based on the data-efficient principles of Gaussian process regression. Evidence

supported how both of these approaches could broaden the applicability of robot

decision making systems, by reducing the amount of prior information they require to

learn policies, and expanding the conditions under which they can be applied. The

algorithms presented in this dissertation are important steps toward making robots

more generally applicable.
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Chapter 8

Appendix

8.1 Chapter 3 Appendix

8.1.1 Experimental Details for the Regression Comparison

This experiment compared the first and second moments obtained from distributional

regression algorithms: quantile regression and the proposed Wasserstein gradient flow

algorithm. Distributions were parameterized with the same number of atoms, which

varied in {5, 10, 20, 50}. The atom locations were optimized from data drawn from a

five-component Gaussian mixture model. The Gaussians used the following parameters;

components were equally likely to be experienced (ci = 1/5); component means were

µi ∈ {−5,−3, 0, 5, 6, 9}; standard deviations σi ∈ {1, 2, 1, 2, 1, 0.5}, for i = 1, · · · , 5.

Models were evaluated on a separate draw of the same size as the training set. Target

values, y, were computed using empirical estimates from 10, 000 samples. The violin

plots show the distribution of root mean square error RMSE =
√

1
N

∑N
n=1(y − ŷ)2

samples between the targets and the estimates ŷ over N = 100 trials.

8.1.2 Experimental Details for the Ablation Study

This experiment evaluated the proposed algorithm’s performance with coarse sweeps

of the minimum temperature β−1 ∈ {0.01, 0.1, 0.2, 0.25, 0.5, 0.9} and step size h ∈

{0.01, 0.1, 0.5, 1., 10.}. Evaluations considered 50 trials. Data came from the same five-

component Gaussian mixture model used in the Regression Comparison experiment.

Results show the root mean square error in the first and second moments with targets

computed using 10, 000 samples and empirical estimators.
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Figure 8.1: Ablations of temperature β and step size h in proximal loss.

8.1.3 Experimental Details for WGF Policy Evaluation

This experiment performance policy evaluation on Monte Carlo (MC) returns from

the optimal policy. The optimal policy was obtained by running Q-learning for 10, 000

episodes with an (ε = 0.1)-greedy behavior policy, γ = 0.9, learning rate α = 0.5, and

using an absorbing terminal state. MC returns were computed for each state from

200 rollouts of 200 time steps. A discrete distribution was parameterized with 200

atoms initialized from a standard Gaussian, then transported using 100 gradient steps

with a step size of 0.5. The proximal loss was annealed down from β−1 = 1 to 0.25 in

minimum steps of 0.5; the proximal time step was set to h = 1. We report the curves

of the proximal loss and the squared value error at each gradient step.

8.1.4 Experimental Details for WGF in the Control Setting

This experiment used the OpenAI Gym (Brockman et al., 2016) environments Moun-

tainCar, CartPole, and LunarLander with discrete actions. Atom locations were

computed using a two-layer, fully-connected neural network, where each layer had 256

hidden units. Networks were optimized with the proposed WGF proximal loss and
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Figure 8.2: CliffWorld with a modified reward structure for multiple solutions. Here
N (µ)
σ denotes N (µ, σ).

compared to a network optimized with the quantile regression loss (Dabney et al.,

2017). Both models regressed 2 quantiles. Network parameters were adjusted with the

Adam optimizer (Kingma & Ba, 2015) using a step size of 10−3. Experience replay

buffers with mini-batches of size 32 and a total capacity of 10, 000 transition samples

were used. Each learner explored with an (ε = 0.1)-greedy policy, using γ = 0.99 until

the absorbing state was reached. We report data for 5 independent trials.

8.1.5 Experimental Details for Control in the Presence of Uncertainty

This experiment used data generated in the CliffWalk environment (Sutton & Barto,

1998). The environment’s reward structure was modified with the addition of a

second optimal trajectory. One trajectory emits stochastic rewards, whereas the other

trajectory’s rewards are deterministic (Figure 8.2). Stochastic rewards were clipped to

be within the interval [−10, 10]. Both the WGF and quantile regression agents used a

tabular representation of 16 atoms for each return distribution. Learning occurred

with γ = 1, a maximum horizon length of 500, and the same loss settings used in the

policy evaluation experiment. The number of gradient steps was limited to 50, unless

a tolerance of 10−8 was exceeded below first. Data gathered from M = 50 independent

trials is reported. The 95% confidence intervals were computed using the standard
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t-distribution with M − 1 degrees of freedom.

8.1.6 Mathematical Proofs

This section provides proofs for the main theoretical results of Chapter 3. Supporting

results include references to their original source(s). All the following results involving

probability measure apply for single measures.

Lemma 1. Let τ ∈ (0, 1) and consider ξτ = F−1
X (τ). Then F−2

X (τ) = E[X ≤ ξτ ].

Proof. By conjugate duality,

F−2
X (τ) = τξτ − F (2)

X (x),

= τξτ − τE[X − ξτ |X ≤ ξτ ],

= τE[X|X ≤ ξτ ],

= E[X ≤ ξτ ].

Proposition 1. G1 �(2) G2 if, and only if
∑j

i=1 g
[i]
1 ≥

∑j
i=1 g

[i]
2 , ∀ j = 1, · · · , N.

Proof. We prove the result in the context of random returns. However, this holds

for general random variables. We consider random returns induced by two different

actions, respectively denoted G1, G2. Each return distribution is approximated with a

discrete Lagrangian measure

µ1 ≈
1

N

N∑
n=1

δ(g
(n)
1 ), µ2 ≈

1

N

N∑
n=1

δ(g
(n)
2 ).
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Given that G1 �(2) G2, we know by the definition that F−2
1 (τ) ≥ F−2

2 (τ) for all

τ ∈ (0, 1). Invoking Lemma 1 allows us to rewrite the definition with total expectations

E[G1 ≤ ξ
(τ)
1 ] ≥ E[G2 ≤ ξ

(τ)
2 ], ∀ τ ∈ (0, 1).

Denote the ordered samples of a return distribution to be g[1] ≤ g[2] ≤ · · · ≤ g[N ].

Then with particle sets from each measure, we have

j∑
i=1

g
[i]
1 ≥

j∑
i=1

g
[i]
2 , ∀ j = 1, · · · , N.

The other implication follows by normalizing the sums with 1/N and invoking Lemma

1 again to arrive at the definition.

Proposition 2 (Fishburn (1980)). Assume µ has two finite moments. Then X �(2) Y

implies µ(1)
X ≥ µ

(1)
Y or µ(1)

X = µ
(1)
Y and µ(2)

X ≤ µ
(2)
Y , where (·) denotes a particular moment

of the distribution µ.

Proof. This result follows from Theorem 1 of Fishburn (1980), which proves an ordering

dominance of any finite degree.

Proposition 3. Let {µt}t∈[0,1] be an absolutely-continuous curve in P(R) with finite

second-order moment. Then for t ∈ [0, 1], the vector field vt = ∇( δE
δt

(µ)) defines a

gradient flow on P(R) as ∂tµt = −∇ · (µtvt), where ∇ · u is the divergence of some

vector u.

Proof. See Ambrosio (2005), Theorem 8.3.1.

Proposition 4. Let µ0 ∈ P2(R) have finite free energy E(µ0) <∞, and for a given

h > 0, let {µ(h)
t }Kt=0 be the solution of the discrete-time variational problem, with
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measures restricted to P2(R), the space with finite second moments. Then as h→ 0,

µ
(h)
K → µT , where µT is the unique solution of the Fokker-Plank equation at T = hK.

Proof. See Jordan et al. (1998), Theorem 5.1.

Proposition 5. Let {µ(h)
t }Kt=0 be the solution of the discrete-time JKO variational

problem, with measures restricted to P2(R), the space with finite second moments.

Then E(µt) is a decreasing function of time.

Proof. We show that the free-energy E(µ) = F (µ)+β−1H(µ) is a Lyapunov functional

for the Fokker-Planck (FP) equation. Following the approach of Markowich & Villani

(1999), we consider the change of variables µt = hte
−U , where we let β = 1 without

loss of generality. With this, FP is equivalent to

∂tht = ∆ht −∇U · ∇ht. (8.1)

Whenever φ is a convex function, one can check the following is a Lyapunov functional

for (8.1), and equivalently FP:

∫
φ(ht)e

−Udz =

∫
φ(µte

U)e−Udz.

Differentiating with respect to time shows

d

dt

∫
φ(ht)e

−Udz = −
∫
φ′′(ht)|∇ht|2e−Udz < 0.

Now consider φ(ht) = ht log(ht)− ht + 1. With the identity
∫

(ht − 1)e−Udz = 0, we

find

∫
φ(ht)e

−Udz =

∫
µt log

( µt
e−U

)
dz =

∫
µt(U + log µt)dz = E(µ).
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Thus, the free-energy functional is a Lyapunov function for the Fokker-Planck equation,

and E(µt) is a decreasing function of time. In the low-energy state the optimal

distributional Bellman equation is satisfied with pure Brownian motion.

Theorem 1. If T µ = µ, then ProxWhE(µ) = µ as β →∞.

Proof. Let d(µ, ν) be some distributional distance between measures µ and ν, such

as the supremal k-Wasserstein = sups,aWk(µ, ν). Furthermore, suppose µ∗ = T µ∗ is

the fixed point of the optimal distributional Bellman operator T . We consider the

proximal operator

ProxWhE(µk) = arg min
µ

W2
2(µ, µk) + 2hE(µ).

It follows that µ∗ = T µ∗ and

d(T µ∗, µ∗) ≤ d(ProxWhE(µ∗), µ∗) = d

(
arg min

µ
W2

2(µ, µ∗) + 2h E(µ)︸ ︷︷ ︸
0 as β→∞

, µ∗
)
,

≤ d

(
arg min

µ
W2

2(µ, µ∗) = µ∗, µ∗
)

≤ 0

Distance is non-negative, so it must be that ProxWhE(µ∗) = T µ∗ = µ∗.

8.1.7 Sinkhorn’s Algorithm

This section presents an algorithm for approximating the W2
2 distance through entropy

regularization. Including entropy reduces the original Optimal Transport problem to

one of matrix scaling. Sinkhorn’s algorithm can be applied for this purpose to admit

unique solutions.
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The optimal value of the Kantorovich problem is the exact W2
2 distance. Given

probability measures α =
∑N

i=1 αiδxi and β =
∑M

j=1 βjδyj , the problem is to compute

a minimum-cost mapping, π, defined as a non-negative matrix on the product space

of atoms {x1, · · · , xN} × {y1, · · · , yM}. Denoting the cost to move xi to yj as Cij =

||xi − yj||2, the problem is

W2
2(α, β) = min

π∈RN×M≥0

〈π,C〉 =
∑
ij

πijCij, (8.2)

such that π1M = α, π>1N = β. (8.3)

This approach constitutes a linear program, which unfortunately scales cubically in

the number of atoms. The complexity can be reduced by considering an entropically

regularized version of the problem. Let ε be a regularization parameter. The new

problem is written in terms of the generalized Kullback-Leibler (KL) divergence:

W2
2(α, β) ≈Wε(α, β) = min

π∈RN×M≥0

〈π,C〉+ εKL(π||α⊗ β), (8.4)

=
∑
i,j

πijCij + ε
∑
i,j

[πij log
πij
αiβj

− πij + αiβj], (8.5)

such that π1M = α, π>1N = β. (8.6)

The value of Wε(α, β) occurs necessarily at the critical point of the constrained
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objective function

Lε =
∑
i,j

πijCij + ε
∑
i,j

[πij log
πij
αiβj

− πij + αiβj]

−
∑
i

fi

(∑
j

πij − αi
)
−
∑
j

gj

(∑
i

πij − βj
)
, (8.7)

∂Lε
∂πij

= 0 =⇒ ∀ i, j, Cij + ε log
π∗ij
αiβj

= f ∗i + g∗j . (8.8)

The last line of (8.8) shows that the entropically-regularized solution is characterized

by two vectors f ∗ ∈ RN , g∗ ∈ RM . With the following definitions

ui = exp(f ∗i /ε), vj = exp(g∗j/ε), Kij = exp(−Cij/ε), (8.9)

one write the optimal transport plan as π∗ = diag(αiui)Kdiag(vjβj). Then the

approximate Wasserstein distance can be computed simply as

Wε(α, β) = 〈π∗, C〉+ εKL(π∗||α⊗ β) =
∑
ij

(f ∗i + g∗j ) = 〈f ∗, α〉+ 〈g∗, β〉

We mentioned that Optimal Transport reduces to positive matrix scaling. Indeed,

using the vectors u and v, Sinkhorn’s algorithm provides a way to iteratively scale K

such that the unique solution is π∗. Initialize u(0) = 1N , and v(0) = 1M , then perform

the following iterations for all i, j

v
(1)
j =

1

[K>(α� u(0))]j
, u

(1)
i =

1

[K(β � v(1))]i
,

...
...

v
(n+1)
j =

1

[K>(α� u(n))]j
, u

(n+1)
i =

1

[K(β � v(n+1))]i
. (8.10)
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Sinkhorn’s algorithm performs coordinate ascent with f and g to maximize the dual

maximization problem

Wε(α, β) = max
f∈RN ,g∈RM

〈f, α〉+ 〈g, β〉 − ε 〈α⊗ β, exp{(f ⊕ g − C)/ε} − 1〉 . (8.11)

Each update consists of kernel products, K>(α � u) and K(β � v), and point-wise

divisions. This procedure is described in Algorithm 11, using computations in the log

domain to numerically stabilize the updates. The log updates derive from (8.9) and

(8.12):

log vj = − log
∑
i

Kijαiui log ui = − log
∑
j

Kijβjvj,

gj = −ε log
∑
i

exp{(−Cij + fi)/ε+ logαi}

fi = −ε log
∑
j

exp{(−Cij + gj)/ε+ log βj}. (8.12)

Sinkhorn iterations typically loop until convergence. In practice, a decreasing

temperature sequence {εn} is employed with which to bound the number of iterations.
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Algorithm 11 Sinkhorn’s Algorithm in the log domain for W2
2

1: input: Source and target measures α =
∑N

i=1 αiδxi , β =
∑M

j=1 βjδyj , Annealing

temperature sequence {εn}

2: i ∈ {1, · · · , N}, j ∈ {1, · · · ,M}

3: fi ← 0, gj ← 0 ∀ i, j

4: for ε ∈ {εn} do

5: Cij = 1
2ε
||xi − yj||2 ∀ i, j

6: g
(n+1)
j ← −ε log

∑
i exp{(−Cij + f

(n)
i )/ε+ logαi} ∀ j

7: f
(n+1)
i ← −ε log

∑
j exp{(−Cij + g

(n+1)
j )/ε+ log βj} ∀ i

8: output: 〈f, α〉+ 〈g, β〉

8.1.8 Proof that the Gibbs measure minimizes free energy.

Remark 1. Let E(µ) = F (µ) + β−1H(µ), with F (µ) =
∫
U(z)dµ. The minimizer is

the Gibbs density,

µ∗(z) = Z−1 exp{−βψ(z)},

where ψ(z) = U(z) +
∫ 1

0
λ(τ)S(z, τ)dτ , and Z =

∫
exp{−βψ(z)}dz.

Proof. Set the functional derivative of E to zero and solve for µ. The derivatives are

δF

δµ
= U(z),

δH

δµ
= log(µ) + 1.

Solving for µ∗ emits a proportionality, which can be normalized as described:

U(z) + β−1(log(µ∗) + 1) = 0 =⇒ µ∗ ∝ exp{−βψ(z)}
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Figure 8.3: Frequency of multiple-solution events that occurred during the Control in
the Presence of Uncertainty experiment.

8.1.9 On the prevalence of multiple solutions

Figure 8.3 shows the number of times SSD conditions were detected during the Control

in the Presence of Uncertainty experiment. This data shows that multiple solutions

will occur often enough in the considered domain to justify SSD action selection.

8.2 Chapter 5 Appendix

8.2.1 Gaussian Process Parameter Optimization

During the time this work was completed, most software packages required an objective

function and its gradient to solve optimization problems. Below, we provide the full

details of the predicted value function’s log likelihood gradient computation.
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Objective Gradient: Let Kr = Q + σ2I + KruK
−1
uuKur and ξj be the j-th opti-

mization variable. The gradient with respect to ξj is

∂L
∂ξj

= −1

2
tr(K−1

r Jr) +
1

2
r>K−1

r JrK
−1
r r. (8.13)

Here, Jr is the tangent matrix of Kr with respect to ξj. The full equations for

computing Jr are described in the next section.

Likelihood Covariance Tangent Matrix: Denote ξj to be a generic optimization

variable. Then the matrix Jr used in Equation 8.13 is given by

Jr =
∂Q

∂ξj
+

∂

∂ξj
σ2I + Kru

∂

∂ξj
(K−1

uuKur) + Jru(K
−1
uuKur),

∂Q

∂ξj
= diag

(
Jrr −Kru

∂

∂ξj
(K−1

uuKur)− Jru(K
−1
uuKur)

)
,

∂

∂ξj
(K−1

uuKur) = K−1
uuJur +

∂K−1
uu

∂ξj
Kur,

∂K−1
uu

∂ξj
= −K−1

uuJuK
−1
uu .
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