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Abstract—Learning to navigate in uncertain environments is a
critical skill for modern robotic systems, especially those designed
for autonomous driving. One approach to acquiring driving skills
begins with reinforcement learning in a simulated environment,
then transfers the pre-trained system to a target domain for
additional fine tuning. Using a highly-realistic driving simulator
can reduce the approximation gap from the target domain but,
beyond a certain point, accuracy can have negligible impacts on
route-level navigation problems—when the concern is learning to
move east or west, rather than accelerate or steer, for instance.
This paper introduces the Stochastic Road Network Environ-
ment: a simulated domain aimed at modeling stochasticity that
influences route-level decision making. Stochasticity due to traffic
and roadway interactions is modeled with a simple stochastic re-
ward. The proposed environment maintains a necessary amount
of physical realism by streaming high-dimensional LIDAR scans
of complex urban surroundings. Experiments show that robust
navigation policies can be learned with modest amounts of
data, further suggesting the proposed domain could be a useful
platform for autonomous driving research with reinforcement
learning. All code needed to use the environment will be made
available in an open source repository.

I. INTRODUCTION

Endowing mobile robots with the ability to autonomously
navigate has been viewed as a major challenge to realizing
their full potential as autonomous embodied systems [1], [2].
Autonomous navigation is particularly challenging in densely-
populated urban environments, where the actions of other
agents and the constraints imposed by traffic rules lead to
complex patterns of sensory experience. Examples are myriad
and can be as complicated as observing aggressive drivers
or road construction through a limited set of visual sensors.
Another critical requirement in these settings is balancing
competing objectives such as risk and reward, or trading off
between robustness and uncertainty.

Reinforcement Learning (RL) offers a way for embodied
systems to acquire navigational knowledge in complex urban
environments through trial-and-error learning [3]. Instead of
operating under a fixed model of an environment, as classical
approaches would do, RL systems adapt their knowledge
by directly interacting with the world. Until the mid-2010s,
RL was impractical to use with high-dimensional sensory
inputs. But this changed when RL was paired with deep
neural network architectures—one of the earliest examples,
DQN [4], was able to play Atari 2600 games to superhuman

levels. These principles have since been adopted by embodied
systems that can learn to manipulate small objects [5], [6],
and navigate underactuated aerial vehicles [7].

Despite the added autonomy that deep RL offers embodied
systems, navigation research in urban settings continues to be
held back by the computational expense of learning tabula
rasa [1]. As a result, many researchers have augmented learn-
ing with computationally-cheaper experience from simulation.
One approach known as Sim-to-Real [8], begins tabula rasa
learning in simulation, then deploys the system to its target
environment for additional fine tuning and operation. Simu-
lators like CARLA [9] and TORCS [10], for instance, have
been used for this purpose.

Current urban driving simulators are effective for augment-
ing learning systems operating on small timescales, and those
which require a high degree of physical realism to perform
well. However, too much realism can be expensive for learning
to navigate at the route level. Compared to obstacle avoidance
and stability control systems, route-level navigation involves
decision making over much larger timescales. Learning to
navigate with high-rate sensory data is difficult because it
contains information which is not necessarily relevant and can
thus appear noisy. Deep RL has been successfully applied in
other simulated environments [11]–[15], but these lack many
natural qualities that are unique to urban driving settings.

This paper introduces a simulated domain for learning route-
level navigation skills, called The Stochastic Road Network
Environment. The environment simulates high-dimensional
visual imagery over large timescales. Observations come from
a virtual LIDAR sensor, whose scans are taken at different
waypoints around a CARLA city map [9]. Low-level aspects
of urban driving, such as traffic, are abstracted into the
stochasticity of a time penalty reward signal.

This paper shows that the proposed environment can be
helpful for studying robust navigation in urban settings using
deep reinforcement learning. We describe a novel procedure
for deploying mobile robots in uncertain environments—using
a policy derived from the distribution of returns encountered
under a greedy policy. The procedure is demonstrated in
the proposed simulation environment; results substantiate its
validity and characterize the data regime required to learn a
useful robust policy. The paper concludes with some directions
for future work.



II. PROBLEM SETTING

The interaction between a robot and its environment is
formalized as a Markov Decision Process (S,A, P, P1, γ) with
a finite set of states S and actions A, a distribution of initial
states P1(S1), a transition distribution P (S′, R|S = s,A = a),
and discount factor γ ∈ [0, 1). At each time step t ∈ N the
system takes an action at, which causes the environment to
transition from st to st+1 and output a scalar reward rt+1.
Actions are specified with a policy π : S → P(A), coming
from the set of all policies Π. For a fixed π, the return is
a random variable representing a sum of discounted future
rewards observed while under its directive:

Gπ
t ≜ Rt+1 + γRt+1 + γ2Rt+3 + · · · . (1)

The expected return conditioned on a state-action pair is
known as the action-value function:

qπ(s, a) ≜ E[Gπ
t |St = s,At = a]. (2)

The action-value function is the central learning target for most
RL systems whost objective is to find a policy that maximizes
qπ(s, a) at every state-action pair.

In the off-policy setting, the learner takes actions according
to a behavior policy β ∈ Π then uses that experience to update
a target policy π. Reinforcement learners often use the ε-
greedy policy, which chooses uniform random actions with
probability ε and otherwise actions that maximize q(s, a).

Distributional RL algorithms replace the value function with
the distribution over random returns (1) [14]. This allows
them to estimate a collection of outcomes that could result
from the stochasticity inherent in the domain. For instance,
if reward encodes a robot’s travel time, then its return distri-
bution reflects the spread in outcomes that result from taking
certain routes—whose traffic conditions could vary from some
random process. This is the problem setting our proposed
environment encodes.

A. Decision Criteria for Robust Returns

Given the potential variability in a robot’s return and the
consequences of directly experiencing such outcomes, a safer
alternative is to use off-policy learning to find the most robust
return-maximizing policy. Robustness here is measured with
the dispersion of a given return distribution, and it can be mea-
sured with statistics such as the variance [16] or conditional
value at risk [17]. Martin et. al [18] showed that policies based
on the second-order stochastic dominance (SSD) relation are
aggregations of CVaR policies, and these can lead to optimal
behaviors that favor robustness when multiple solutions exist.

The SSD relation is defined using distribution functions and
compared over the set of their realizable values. Consider two
returns (1), G and G′, respectively induced by actions a and a′.
We say that G stochastically dominates G′ in the second order
when their integrated CDFs, F (2)(z) ≜

∫ z

−∞ F (x)dx, satisfy
the following equation, and we denote the relation G ⪰(2) G

′:

G ⪰(2) G
′ ⇐⇒ F

(2)
G (z) ≤ F

(2)
G′ (z), ∀ z ∈ R. (3)
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Fig. 1. Robust Learning Procedure: Data gathered with a behavior policy
β is used to update a target learning policy π. At some point learning will
stop, then the system will be deployed with the target deployment policy ψ.

The function F (2) defines the frontier of what is known as the
dispersion space, whose volume reflects the degree to which a
random variable differs from its expected value. Outcomes that
are disperse have more uncertainty and are less robust when it
comes to realizing consistent outcomes. Indeed, a fundamental
result from expected utility theory states that rational risk-
averse agents prefer outcome G to G′ when G ⪰(2) G

′ [19].
In settings where multiple outcomes do not result in an exact

tie between expected values, the SSD policy will be equivalent
to the standard greedy policy. Here we also introduce a
relaxation to the SSD policy that permits uncertainty to be
considered even when there is not an exact tie. The thresholded
SSD policy looks at the action gap between the top two
optimal actions. When this is less than a certain threshold they
will be considered equivalent, and the tie will be broken with
a comparison of their second moments which is consistent
with the exact SSD policy—namely, the action that induces
the smaller second moment will be preferred.

B. Target Policies for Robust Deployment

This work distinguishes between two kinds of target poli-
cies. The target learning policy is the policy used in the
update rule, and its outcomes are reflected in the learned return
distribution, e.g. the standard greedy policy. In embodied
learning settings, there can be an additional policy that is used
after the learning process stops or is temporarily paused. We
call this the target deployment policy ψ ∈ Π; it is defined as
a function of the target learning policy ψ ≜ f(π), which we
denote with the shorthand ψ(π) in Figure 1. For example, the
deployment policy can be the same as the learning policy—in
which case, the robot would learn for some period of time,
stop executing its behavior policy, then start executing its
target learning policy. However, in settings where robustness
is desired, it can be beneficial for the deployment policy to
selectively choose which outcomes from the learning policy it
would like to realize.

III. THE STOCHASTIC ROAD NETWORK ENVIRONMENT

The Stochastic Road Network Environment is built upon
map structure and simulated sensor data originating from the
CARLA autonomous vehicle simulator version 0.9.6 [9].

Built-in to the CARLA simulator are a set of road network
maps of varied sizes, pre-configured with rich environmental
details and well-defined road paths. In the targeted CARLA
version 0.9.6, five such maps are available by default,



Fig. 2. An observation sample from the proposed environment: A learning
system observes an occupancy image whose pixels correspond to the presence
of a LIDAR return within a specific block of space. The image is overlaid on
top of the corresponding 3D scene.

named in the sequencing of Town01 to Town05. These maps
vary in size, with multiple kilometers of roadway defined in
each. The maps also vary with respect to the road features
present, including complex intersections, multi-lane roadways
(allowing for lane changes), and roundabouts. A breakdown
of map action spaces, state count, and features is provided in
Table I.

The underlying road-network graphs in these maps are rep-
resented in the OpenDRIVE road description format [20]. This
format provides an industry-standard description language of
road networks for use in autonomous vehicle simulation. Our
environments are generated via extraction of discrete states
and actions from the continuous OpenDRIVE maps provided
alongside CARLA. The generation of learning environments
is a one-time, offline data pre-processing step, whereby com-
munication with the CARLA simulator is only necessary to
generate static map graphs and observation data.

A. Environment States and Actions

The environment is comprised of a discrete, directed road
network graph with a set of fixed-position states. For each
map state s, n candidate actions are available to the agent,
where n is the largest number of candidate directions of travel
available at any position in the environment graph. As such,
the dimensionality of the action space varies among the five
maps in our environment, but is fixed for all states within a
single map.

The action space at each state is a discrete map of candidate
state transitions. At states for which the graph topology does
not allow for use of the full action space (i.e., in the case of a

TABLE I
ENVIRONMENT MAP STATE AND ACTION SPACES

Map No. Actions No. States Features
Town01 2 319 Basic
Town02 2 156 Basic
Town03 4 665 Lane changes
Town04 4 1679 Lane changes, Roundabouts
Town05 3 1220 Lane changes, Roundabouts

straightaway, where there is only one valid direction of travel)
the remainder of the action space corresponds to a loopback
action, whereby the agent re-transitions into its current state.
State transitions are fully deterministic, meaning every state-
action pair yields a transition to a deterministic subsequent
state.

B. Observation Stream

The CARLA simulator provides access to an array of
rich sensor data-types. In this work, rich 3D LIDAR data is
extracted from the CARLA simulator and post-processed into
a form more amenable to usage with reinforcement learning
methods.

First, raw returns from a 32-beam, 360◦ FoV simulated
3D LIDAR are extracted at each state location in the sim-
ulation environment. Next, this data is collected into a simple
occupancy-map format on a per-state-basis, whereby the num-
ber of LIDAR returns per grid-cell are counted and stored in
a 3D grid structure. This grid structure has a dimensionality
of 256× 256× 3, and a size of 50 m× 50 m× 8.4 m, with
individual voxels of size ∼ 0.2m × 0.2m × 2.7m. Finally, a
single 2D slice of this grid structure (256×256) is extracted for
use as the environment observation at each environment state.
The final observation is binarized, yielding a 2-dimensional
matrix of size 256× 256. Each cell is populated with a value
of 1 if a non-zero number of LIDAR returns were present
within the corresponding occupancy voxel and 0 otherwise. A
representation of the resulting observation format is shown in
Figure 2.

Each 2D observation matrix is associated with the state
that shares the location at which the observation was taken.
Observation data is non-stochastic, with each binary matrix
representing a static, unchanging observation returned from
a specified state. Subsequent revisiting of a given state will
always yield the same observation.

C. Reward Structure

Action rewards in the environment are the resultant sum
of a fixed action reward and special-case modifiers present at
specified state-action pairs.

A fixed base action reward is present at all states, yielding a
deterministic reward of −rbase. In addition to this fixed action
reward, there exist three categories of reward modifiers: goal
actions, crosswalk actions, and loopback actions.

Goal states are those which the agent attempts to reach, and
actions which result in the agent reaching this state yield an
additive deterministic reward of +rbase. This positive reward
offsets the base action reward, resulting in an effective reward
of 0 for goal state-action pairs.



Crosswalk states are the sole source of stochasticity within
the environment, and yield a reward sampled from a zero-mean
truncated Gaussian distribution with a standard deviation of 1
and threshold bounds of −rbase to +rbase. When offset by the
fixed action reward, this results in an effective reward ranging
from −2rbase to 0 for crosswalk state-action pairs. Crosswalk
states are intended to model sources of random travel delay
in a real-world environment, such as pedestrians entering a
crosswalk.

Loopback actions are actions which result in the agent re-
transitioning into its current state. Loopback actions incur an
additional penalty rloopback, resulting in an effective loopback
action reward of −(rbase+rloopback). Loopback actions serve
to model a vehicle stopping action, such as braking.

IV. EMPIRICAL RESULTS

Our primary empirical question asks whether uncertainty
due to route stochasticity can be learned from simulated
experience, then used for robust decision making. Using a
distributional RL system based on Quantile Regression DQN
(QR-DQN) [15], we specifically investigate the extent to
which learned return distributions can be used to avoid routes
with undesirable levels of stochasticity. Results from these
experiments connect back to the paper’s main claim that the
proposed learning environment can be helpful for studying
robust navigation using deep reinforcement learning.

The experiment compares the performance of different tar-
get deployment polices. This is measured with the approximate
discounted return (γ = 0.99) taken over a trajectory with a
maximum length of one-thousand steps. Each performance
measurement is taken during an independent evaluation, at
one-hundred equally-spaced times over a total of one-million
time steps of learning. Evaluations occur in a separate en-
vironment instance starting from the same location. This is
intended to model the counterfactual scenario of what could
happen if learning were paused and the deployment policy
was executed. The learner follows a ε-greedy policy in order
to learn return distributions associated with the greedy policy
(its target learning policy)1. Three target deployment policies
are considered: the greedy policy, the exact SSD policy, and
the thresholded SSD policy.

Performance results are shown in Figure 3. Convergence
occurs approximately within 4 · 105 steps of experience. The
Greedy policy is agnostic to environment stochasticity, so it
takes the shortest (noisy) path. Because there are no exact ties
in expectation, the SSD policy exhibits identical behavior to
Greedy. We note, however, that the Thresholded SSD policy,
due to the stochasticity in the shortest path, successfully takes
another path without stochasticity in nearly all trials.

V. CONCLUSION

This paper introduced the Stochastic Road Network Envi-
ronment for route-level urban navigation. Experiments demon-

1Although our work uses the ε-greedy behavior policy, in practice, one
could use a policy that is known to respect safety constraints and still explore
the operating space sufficiently well.

Fig. 3. Learning curves of QR-DQN [15] with different target deployment
policies. We report the mean and standard deviation resulting from 30 trials.
As indicated by the returns, both the greedy and exact SSD policies take a
path with high stochasticity in all trials. The thresholded-SSD policy sacrifices
optimality for robustness, and during the final evaluation, the second shortest
path (Robust Path in the plot) is taken in 22 trials, the third shortest path is
taken in seven trials, and the shortest path (Noisy Path in the plot) is taken
in one trial. Both the second shortest path and the third shortest path are
noiseless, and their lengths differ by only one step.

Fig. 4. Executed paths in Town 1. The path taken during the final evaluation
is shown for each deployment policy. Greedy and SSD methods take the noisy
shortest path in all trials. Thresholded SSD takes the second-shortest path to
avoid unwanted stochasticity in nearly all trials, which is visualized here.

strated how it can serve as a useful platform for studying and
developing RL algorithms that are robust to stochastic returns.
Future work will consider non-stationary sources of stochas-
ticity to model multi-agent interactions, and the inclusion of
multiple sensory modalities.
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