
Adapting the Function Approximation Architecture in Online
Reinforcement Learning∗

John D. Martin†

Department of Computing Science
University of Alberta / Amii

Edmonton, AB, Canada
jmartin8@ualberta.ca

Joseph Modayil†
DeepMind

Edmonton, AB, Canada
modayil@deepmind.com

Fatima Davelouis Gallardo
Department of Computing Science

University of Alberta / Amii
Edmonton, AB, Canada

daveloui@ualberta.ca

Michael Bowling
DeepMind &

Department of Computing Science
University of Alberta / Amii

Edmonton, AB, Canada
mbowling@ualberta.ca

Abstract

The performance of a reinforcement learning (RL) system depends on the computational architecture used to approximate
a value function. Deep learning methods provide both optimization techniques and architectures for approximating
nonlinear functions from noisy, high-dimensional observations. However, prevailing optimization techniques are not
designed for strictly-incremental online updates. Nor are standard architectures designed to efficiently represent obser-
vational patterns from an a priori unknown structure: for example, light receptors randomly dispersed in space. This
paper proposes an online RL algorithm for adapting a value function’s architecture and efficiently finding useful nonlinear
features. The algorithm is evaluated in a spatial domain with high-dimensional, stochastic observations. The algorithm
outperforms non-adaptive baseline architectures and approaches the performance of an architecture given side-channel
information about observational structure. These results are a step towards scalable RL algorithms for more general
problem settings, where observational structure is unavailable.

Keywords: Online, Representation, Sparsity, Constructivism

Acknowledgements

The authors would like to acknowledge the support of their many colleagues. A special thanks goes to Tom Schaul, Zaheer
Abbas, Brendan Englot, Paul Szenher, Dibya Ghosh, and Shruti Mishra for their comments on an early draft of this work;
Parash Rahman for discussions on related work; Brian Tanner for his programming expertise; Patrick Pilarski, Rich Sutton,
Adam White, and others at DeepMind for their comments and questions during the conceptual stages of this work.

∗This extended abstract builds on the following article: “J. Martin, J. Modayil. Adapting the Function Approximation Architecture in
Online Reinforcement Learning. CoRR abs/2106.09776, 2021”

†Equal contribution. Correspondence to John D. Martin

1 Introduction

Architectures for value function approximation typically impose sparse connections with prior knowledge of observational
structure. When this structure is known, architectures such as convolutions, transformers, and graph neural networks can
be inductively biased with fixed connections. However, there are times when observational structure will be unavailable
or prohibitively difficult to encode as an architectural bias—for instance, relating sensors that are randomly dispersed in
space. Even when observational structure is available, common biases may not always be the most useful. Yet in all of
these situations it is still desirable to approximate value functions with a sparsely-connected architecture for computational
efficiency. An important open question is whether equally-useful representations can be constructed when observational
structure is unknown—particularly in the incremental, online setting without access to a replay buffer.

Prior work has viewed observational structure as a hidden aspect of the environment [1] or a fixed architectural element
that relates inputs. Instances of the latter type examined small input spaces, a combinatorially-large space of graphs [6], or
offline methods that learn to reduce connections of a dense architecture [2]. Early work treated observational structure as
the learning target: first positing a family of smooth topologies then selecting one to minimize a reconstruction loss [4].

This paper is concerned with how a reinforcement learning system could construct a value function approximation
architecture in the absence of observational structure. We propose an online algorithm that adapts connections of a
neural network using information deriving strictly from the learner’s experience stream, using many parallel auxiliary
predictions. Auxiliary predictions are specified as General Value Functions (GVFs) [11], and their weights are used to
relate inputs and form subsets we call neighborhoods. These represent the input of fully-connected, random subnetworks
that provide nonlinear features for a main value function. The algorithm is validated in a synthetic domain with high-
dimensional stochastic observations. Results show the algorithm can adapt an approximation architecture without
incurring substantial performance loss, while also remaining computationally tractable. Code has been made publicly
available at https://github.com/jdmartin86/frogseye. Our key contributions are as follows.

Online adaptive architecture: Using many parallel auxiliary learning objectives, our architecture dynamically connects
observations to a set of filter banks to form useful nonlinear features.

Useful neighborhoods: The proposed algorithm is shown to compute sparse neighborhoods that perform comparably
well to neighborhoods formed from side-channel distance information, and it substantially outperforms static baseline
architectures.

Reduced architectural bias with conventional data and computational resources: In a domain of noisy observations with
thousands of dimensions, useful neighborhoods are found within five-million time steps of experience, after running on a
single GPU for two hours.

2 Problem Setting

This work considers the standard prediction setting for reinforcement learning [10]. The return at time t ∈ N is the
discounted sum of future rewards, Gt ≡ Rt+1 + γRt+2 + γ2Rt+3 + The value function gives the expected return from
a state: v(s) ≡ E[Gt|St = s]. Instead of experiencing states directly, the learner receives a stream of observation vectors
ot ∈ Rd and rewards. The learner’s only knowledge of the environment state St and dynamics comes from this single
stream of experience. With no direct access to the environment state, the learner forms an approximate value function to
estimate the expected return. Under a linear approximation, this is defined as a function of a feature vector xt ∈ Rℓ, where

v̂(xt;wt) ≡ w⊤
t xt, v̂(xt;wt) ≈ v(St). (1)

In this work the learner incrementally updates its weights wt online with a temporal difference algorithm.

2.1 An approximation architecture for the online setting:

We consider an architecture that computes nonlinear features from a sparsely-connected neural network with one hidden
layer of random weights. A neighborhood is the set of inputs connected to a given nonlinear feature in the network; here it
contains a sparse subset of the input, similar to an image patch used with convolutional architectures for vision. Nonlinear
features from the i-th neighborhood are computed as a composition of three functions, yi

t ≡ f(AMiot + a). First is a
neighborhood selection matrix Mi ∈ {0, 1}k×d, then a linear projection A ∈ Rn×k shared between all the neighborhoods,
and finally a nonlinearity f : Rn → Rn. The neighborhood selection matrix Mi is an orthogonal rank-k matrix with
one-hot columns—used to mask out an ordered selection of k elements of the observation. The linear projection A can
be thought of as a set of filters, and a ∈ Rn is a bias. The function f applies a fixed nonlinearity f : R → R to each
element of its n-dimensional input: f(z) = (f(z1), ..., f(zn)). The full feature vector, xt, contains nonlinear features from
m neighborhoods, Miot, and the current observation, xt ≡ concatenate(ot,y

1
t , . . . ,y

m
t). The m neighborhoods encode the

architecture’s graph topology.

1

https://github.com/jdmartin86/frogseye

3 Prediction Adapted Neighborhoods Algorithm 1 Online Value Estimation with
Prediction Adapted Neighborhoods

1: Initialize: w, z, A (fixed), a (fixed), M1:m, w̄1:m, z̄1:m.
2: Receive observation o1 from the environment.
3: x1 ← ComputeFeatures(o1,M

1:m,A,a)
4: for t = 1, 2, 3, · · · do
5: Receive rt+1,ot+1 from the environment.
6: x̄j ← oj for j ∈ {t, t+ 1}
7: parallel for i ∈ {1, · · · ,m}

Update GVF weights with TD(λ).
8: r̄it+1 ← ot+1[c(i)]

9: δ ← r̄it+1 + γw̄i⊤x̄t+1 − w̄i⊤x̄t

10: z̄i ← γλz̄i + x̄t

11: w̄i ← w̄i + ᾱδz̄i

Construct top-k selection matrix.
12: ℓ← Top(k, w̄i), where |w̄i

ℓ1
| ≥· · ·≥ |w̄i

ℓk
|

13: parallel for j, l ∈ {1, . . . , k} × {1, . . . , d}
14: Mi

j,l←1{l = ℓj}
15: xt+1 ← ComputeFeatures(ot+1,M

1:m,A,a)
Update main prediction weights with TD(λ).

16: δ ← rt+1 + γw⊤xt+1 −w⊤xt

17: z← γλz+ xt

18: w← w + αδz

Algorithm 2 ComputeFeatures

1: input: o,M1:m,A,a
2: parallel for i ∈ {1, · · · ,m}
3: yi ← f(AMio+ a)
4: return concatenate(o,y1, ...,ym)

Instead of constructing neighborhoods with prior knowl-
edge of observational structure, we propose using informa-
tion that derives from auxiliary RL predictions, specified as
general value functions [11]. The resulting collections of ob-
servation subsets are called prediction adapted neighborhoods.
This idea stems from the insights of previous works; one
of which suggests that learning many GVF predictions in
parallel can provide problem-relevant statistics [8]; another
that shows predictions can be sufficient for representing
state [5], and a third line of work showing how informative
spatial embeddings can be defined from statistics between
different observation components [9].

A GVF is defined as the expected return of some auxiliary
reward signal R̄i

t+1, also known as a cumulant. Here aux-
iliary rewards are given by observation components, and
their returns are predicted under the same discount and
policy as the main value function (1): Ḡi

t ≡ R̄i
t+1 + γR̄i

t+2 +

γ2R̄i
t+3 + A selector function c(i) returns an index

into the observation vector to determine the i-th cumulant
r̄it+1 ≡ ot+1[c(i)], for i = 1, · · · ,m. In this work, GVFs
are approximated by linear functions of the observation
x̄t ≡ ot, with weights w̄i: w̄i⊤x̄t ≈ E[Ḡi

t|St = s].

One of our key discoveries is that observations can be
related when used as auxiliary rewards for linear GVFs.
Recall a GVF in this work predicts the future discounted
sum of an observation signal, i.e. the auxiliary reward.
Also recall that a GVF is approximated with a linear com-
bination of all observation components, and that linear
representations are insensitive to the input ordering. This latter point means an accurate GVF can be obtained without
knowledge of the observational structure, which is typically encoded in the relative ordering of inputs. Observations
that closely relate to an auxiliary reward tend to have high-magnitude prediction weights. Based on these principles,
prediction adapted neighborhoods are formed with observations with high absolute GVF weights w̄i.

Algorithm 1 outlines how to compute prediction adapted neighborhoods in the online prediction setting (lines 6–14), with
TD(λ) and accumulating traces z. The algorithm constructs each neighborhood with the k observations whose absolute
GVF weights are largest (lines 12–14), and it encodes them with the selection matrices Mi.

In contrast to prior work that regularizes the internal architecture weights A with auxiliary prediction losses [3], our
proposed algorithm uses auxiliary GVFs to impose sparse connections with a predictive structure. This information
derives entirely from the observation stream, with no a priori knowledge of the observational structure. Furthermore, our
proposed algorithm continually adapts the architecture’s connections in response to patterns of the observation stream.

4 Empirical Results in the Frog’s Eye Domain

Figure 1: The Frog’s Eye domain: An insect (gray
circle) is detected by irregularly-distributed prox-
imity receptors (blue: on, gold: off). Three differ-
ent insect trajectories are shown: two prior, one
active. A reward of +1 is received upon entering
the circular red region.

Drawing inspiration from the arrangement of light receptors in a frog’s
eye, we introduce an environment for studying continual prediction in
the absence of observational structure (Figure 1). In our environment,
light receptors have a uniformly-irregular spatial distribution, with
neither the concentrated fovea of a mammalian eye nor the regular
grid of a silicon imaging chip. A simulated frog needs to anticipate the
arrival of an insect without any knowledge of how its light receptors
relate to one another.

The full observation vector ot ∈ {0, 1}4000 is given from a random or-
dering of 4000 proximity receptor outputs. The observation’s ordering
is scrambled at the start of learning and then held fixed. Observations
are corrupted with fifty-percent uniform binary noise. The reward is

2

0 1 2 3 4 5
Timestep (x millions)

0.05

0.06

0.07

0.08
M

ea
n

Sq
ua

re
d

Re
tu

rn
 E

rro
r

Linear
Random
Adaptive
Distance

(a) Majority

0 1 2 3 4 5
Timestep (x millions)

0.05

0.06

0.07

0.08

M
ea

n
Sq

ua
re

d
Re

tu
rn

 E
rro

r

(b) LTU

0 1 2 3 4 5
Timestep (x millions)

0.05

0.06

0.07

0.08

M
ea

n
Sq

ua
re

d
Re

tu
rn

 E
rro

r

(c) ReLU

Figure 2: Prediction adapted neighborhoods are useful: For each feature type, the Adaptive architecture (using prediction
adapted neighborhoods) approaches the performance of Distance (biased with knowledge of observational structure).
Adaptive also performs better than fixed architectures using random neighborhoods (Random) or none at all (Linear).

+1 whenever the insect enters a circular region at the center of the observable space, and it is zero otherwise. An insect
entering the circular region will disappear and respawn at a random location. This process continues indefinitely.

Features f(z) A shape and values
Majority I(z > 2k

3) (1× k) filled with one
LTU I(z > 4) (n× k) from N (0, 1)
ReLU ReLU(z − 4) (n× k) from N (0, 1)

Table 1: Nonlinear feature types defined on a neighborhood.

Methodology: Our experiments compare prediction
accuracy of different value function architectures
while specifically controlling for the effects of neigh-
borhood selection. We use empty neighborhoods
with m = 0 (denoted as Linear), sparse neighbor-
hoods with k randomly-selected observation compo-
nents (Random), prediction adapted neighborhoods
from fixed randomly-selected cumulants (Adaptive), and sparse neighborhoods containing the k-nearest sensors to each
cumulant using side-channel distance information (Distance). The three different nonlinearities considered are shown in
Table 1. We report the average and standard error confidence intervals from 30 trials, which were run to 5 million steps
and observed to complete in under two hours on a V100 GPU. Results are shown in Figures 2, 3, and 4. More experimental
details including information about hyperparameter selection are provided in the full-length paper [7].

4.1 Are Prediction Adapted Neighborhoods Useful?

100 300 1000 2000 4000
Number of Auxilliary Predictions

0.046

0.050

0.054

0.058

Fi
na

l M
ea

n
Sq

ua
re

d
Re

tu
rn

 E
rro

r Random
Adaptive
Distance

(a) Majority

100 300 1000 2000 4000
Number of Auxilliary Predictions

0.046

0.050

0.054

0.058

Fi
na

l M
ea

n
Sq

ua
re

d
Re

tu
rn

 E
rro

r

(b) LTU

Figure 3: Auxiliary Learning Effect: Increasing the number
of auxiliary predictions leads to performance improvements,
as measured with final error. These observations relate to
two well-known results in RL; the idea that states can be
represented as a collection of predictions [5], and that a rep-
resentation can improve with more auxiliary predictions [3].

Our first experiment asks: do prediction adapted neighbor-
hoods provide measurable utility for approximating the main
value function? Figure 2 shows learning curves of predic-
tion accuracy. The Adaptive architecture—using predic-
tion adapted neighborhoods—leads to little performance
loss compared to the Distance architecture when evalu-
ated across three types of activation functions. Recall the
Distance architecture uses neighborhoods that contain the
k-nearest sensors to each cumulant. The small performance
gap between Adaptive and Distance suggests that predic-
tion adapted neighborhoods are just as useful in this do-
main as neighborhoods biased with side-channel distance
information.

4.2 Does Performance Scale with more GVFs?

Our second experiment examined whether prediction ac-
curacy of Adaptive monotonically improves with an increasing number of auxiliary predictions m. Indeed, in Figure 3
we see that Adaptive’s performance improves as the number of GVFs increase. The best performance is with m = 4000
predictions: one for each sensor in the simulated frog’s eye. These observations relate to two well-known results in RL.
Namely, the idea that states can be represented as a collection of predictions [5], and that a representation can improve
with more auxiliary predictions [3]. Across the range of m values, the Adaptive architecture’s performance is comparable
to the Distance baseline.

3

Figure 4: Prediction adapted neighborhoods appear to encode a temporally-stable spatial structure: A spatial distribution
of auxiliary weights is shown for a random GVF with a cumulant marked by an×. The top ten neighborhood use converges
and remains centered around the cumulant’s location.

4.3 The Spatial Structure of Adapted Neighborhoods

A final inspection examined whether the prediction weights of a GVF contained any spatial structure. Figure 4 shows one
set of auxiliary weights as learning progresses for a randomly-selected GVF. Clearly there are GVFs whose weights encode
a local degree of spatial structure. Furthermore, this structure appears temporally stable over the extended regime of ten
million time steps. These two points highlight that even without prior knowledge of the observation’s spatial structure,
auxiliary GVFs are able to relate observations in a similar way—ultimately one that is useful for the main prediction.

5 Conclusion

This paper addressed how an RL system could construct a value function architecture, specifically in the incremental
online setting for prediction, and in the absence of observational structure. One of our key discoveries was that weights
of auxiliary predictions could be used to relate observations and impose useful sparse connections in a random neural
network approximating a value function. We believe this work could be useful for designing general RL systems that
acquire knowledge from sensory inputs whose observational structure is unknown.

References
[1] R. Evans, J. Hernández-Orallo, J. Welbl, P. Kohli, and M. Sergot. Making sense of sensory input. Artificial Intelligence,

293:103438, 2021.
[2] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574, 2019.
[3] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement learning

with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.
[4] N. Le Roux, Y. Bengio, P. Lamblin, M. Joliveau, and B. Kégl. Learning the 2-d topology of images. Advances in Neural

Information Processing Systems, 20:841–848, 2007.
[5] M. L. Littman, R. S. Sutton, and S. P. Singh. Predictive representations of state. In Advances in Neural Information

Processing Systems 14, pages 1555–1561, 2001.
[6] A. R. Mahmood and R. S. Sutton. Representation search through generate and test. In Workshops at the Twenty-Seventh

AAAI Conference on Artificial Intelligence, 2013.
[7] J. D. Martin and J. Modayil. Adapting the function approximation architecture in online reinforcement learning.

arXiv preprint arXiv:2106.09776, 2021.
[8] J. Modayil, A. White, and R. S. Sutton. Multi-timescale nexting in a reinforcement learning robot. Adaptive Behavior,

2014.
[9] D. Pierce and B. J. Kuipers. Map learning with uninterpreted sensors and effectors. Artificial Intelligence, 92(1-2):169–

227, 1997.
[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[11] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: A scalable real-time

architecture for learning knowledge from unsupervised sensorimotor interaction. In The 10th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, pages 761–768, 2011.

4

	Introduction
	Problem Setting
	An approximation architecture for the online setting:

	Prediction Adapted Neighborhoods
	Empirical Results in the Frog's Eye Domain
	Are Prediction Adapted Neighborhoods Useful?
	Does Performance Scale with more GVFs?
	The Spatial Structure of Adapted Neighborhoods

	Conclusion

