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Introduction
Operating autonomous vehicles in expansive
marine environments is challenging. Oftentimes
the disturbances from ocean currents are much
greater than a vehicle’s total control author-
ity. In these scenarios, it is imperative that
marine robots make accurate predictions of cur-
rent disturbances in order to budget their energy
consumption efficiently. For a robot, however,
this can be a daunting task; because in most
coastal regions, current disturbances arise from
many complex phenomena, which are difficult to
model effectively. Past applications of robots to
these domains have incorporated current data
from high-fidelity, ocean-water simulators using
Gaussian processes. Here we investigate a
method to improve upon prior applica-
tions of Gaussian processes by incorporat-
ing more relevant temporal information.

Conclusion
The predictive accuracy of Gaussian processes
can be improved by structuring training sets
with time traces, rather than entirely with in-
dependent random samples. Our preliminary
results show that introducing a higher degree
of temporal correlation promotes better emula-
tion of the complex oscillations ocean currents
exhibit.
Statistical measures of correlation indicate that
model outputs are significantly dependent upon
each other. We expect that further improve-
ments to the prediction of ocean currents can
be obtained by considering the cross correlation
of model outputs. There are two promising av-
enues to obtain better predictions:

1. Linear Models of Coregionalization: In-
stantaneous output mixing with linear
combinations

2. Convolutional Models: Consider output
mixing over finite time scales.
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Methods
Relating Data Samples: A squared-exponential kernel function κ is used to measure similarity

between samples. As in previous applications [1], spatiotemporal locality attributes similarity
through a sum of squared differences, and a sinusoidal term expresses periodic similarity:
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Predicting Current: Given a data set D = {(x, y)}1:N , where xi = (lat, long , time), and y takes
on horizontal or vertical current speed, we use Gaussian processes to predict ocean currents:

v∗ = K∗(K− σ2I)−1y, Σ∗ = K∗∗ + σ2I−K>∗ (K + σ2I)−1K∗. (2)

Temporal Correlation: Temporal variations in current signals are better captured if D contains
temporally-correlated sequences. Let τ = (x1:T , y1:T ) be the time trace of labeled examples of
some lat-long position. We predict ocean current with the training set

Dcorr = {τj | τj = (x1:T , y1:T )j , ∀ j = lat-long pairs}. (3)

Computing Energy: Current predictions are used to estimate the energy required for propulsion.
Energy is a function of ground velocity vg = vt + vc, where vt is the velocity which the vehicle
requires to steer.

vt = arg min
v∈[vmin

t ,vmax
t ]

vv̂g − vc, E(xi, xj), = αv2gd(xi, xj). (4)

Computing Trajectories: Current predictions contribute to energy estimates, which are subse-
quently used in a planning algorithm to compute robot trajectories. We use the Probabilistic
Roadmap algorithm to generate a graph of candidate trajectories, then search the graph with
A* to return the minimum-energy path.

Results
Our experiments investigate the efficacy of training Gaussian processes using a temporally-correlated
dataset Dcorr. Previous instantiations of Gaussian Processes used to predict ocean currents are based
upon pure i.i.d. datasets Di.i.d. Elements of both datasets are obtained from nearest neighbor results
with respect to lat-long and time. Labels y ∈ {u, v} are obtained from the NYHOPS current model.

Time Trace Comparisons: We selected a random pair of lat-long coordinates from the New York
City coastal region then predicted current magnitude over a forty-eight hour period. Predictions
using a temporally-correlated dataset seem to model current variations more closely than a
purely i.i.d. dataset.

Figure 1: Time traces of current speed components: i.i.d. data (red), temporally-correlated data (blue)
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Figure 2: Correlation intensity of current

Horizontal Speed Vertical Speed
Di.i.d 13.1 3.1
Dcorr 11.5 2.9

Table 1: Mean Squared Error with same parameters

Output Correlations: A naive application of
Gaussian processes to model multiple out-
puts requires independence between the out-
puts. Our preliminary analysis indicates,
however, strong correlation between horizon-
tal and vertical current exists. This suggests
that further improvements could be made to
predictive models by considering such corre-
lations.


