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Summary
We consider Reinforcement Learning with Gaussian Pro-
cess (GP) temporal differences [2]. Our work studies the
extent to which distributed computing can improve the
amount of data GP-based value models can handle. By
invoking episodic independence, we derive two different
distributive models. One model represents the predictive
value posterior as a sum of K experts, and the other, as
a product. As such, predictions can be distributed to K
independent processors. We propose actor-critic meth-
ods that exploit these models for efficient policy evalu-
ation and action selection – balancing exploration and
exploitation by maximizing the GP-UCB criterion [3].
Our experiments compare the resulting methods to an
actor-critic based on the standard GP Temporal Differ-
ence value model. We show our methods are able to pro-
cess more data, and therefore, can solve complex problems
which are too data-intensive for the standard model.

Application: Cloud Robotics
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Distributed methods can reduce the com-
plexity of robot learning. Individual robots
can scale their learning effort on-demand
by delegating intensive computations to ex-
pandable off-board resources. Collabora-
tive robot groups stand to benefit from a
principled information sharing framework.

References
[1] M. Deisenroth and J. Ng. Distributed gaussian processes.

In ICML 32, 2015.

[2] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning
with gaussian processes. In ICML 22, 2005.

[3] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaus-
sian process optimization in the bandit setting: No regret
and experimental design. In ICML 27, 2010.

Distributed Actor-critic Procedures
Actor: Our methods consider a distribution over
value functions and select actions to maximize the
GP Upper Confidence Bound (GP-UCB) [3]

α(x) = v(x) + κ
√
p(x).

The resulting policy exploits the available data con-
servatively - acting greedy when uncertainty is low
and exploring when it is high.
Critic: The predictive posterior, p(V |x∗,D), mea-
sures longterm utility of a state-action pair, x, along
with variance and the associated gradients for ac-
tion selection. The models we consider allow these
predictions to distribute to independent processors.
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(a) GP
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(b) DGP+
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(c) DGPx

Complexity: Predictions must invert Krr + Σ.
GP-SARSA predictions scale with O(N3), where N
is the total number of observed transitions. Our dis-
tributed methods split this cost among K experts,
with n observations each, to achieve O(Kn3). Pro-
vided K < N3/n3, we can improve efficiency.
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(a) v(x) Time
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(b) p(x) Time

Background
Reinforcement Learning: Agents select actions ac-
cording to the discounted return D(x) =

∑N
n=0 γ

nR(xn).
Greedy approaches typically strive to maximize its ex-
pected value V (xn) = E[D(xn)|R(xn),xn]. However,
V (x) is inherently latent and must be estimated from se-
quential observations: states s, actions a, and rewards
R(x), where x = (s,a)>.
GP-SARSA: Treat D(x) = V (x) + ξ as a random func-
tion drawn from a Gaussian Process prior. Apply GP-
regression to predict latent values V (x) from observed re-
wards. The model is R(x) = V (xn) − γV (xn+1) + εn,
where εn = ξn − γξn+1, ξ ∼ N (0, σ2). Stack values and
rewards into vectors, r, v, assuming v ∼ N (0,Kvv). All
variables are jointly Gaussian with r = Hv + ε,(

v
r

)
∼ N

((
0
0

)
,

(
Kvv KvvH

>

HKvv H(Kvv + σ2I)H>

))
.

The upper diagonal matrix H encodes correlation with
elelemts 1,−γ. Condition predictions of V on r to obain
the posterior moments N (V (x)|v(x), p(x))

v(x) = k>r∗(Krr + Σ)−1r,

p(x) = k(x∗,x∗)− k>r∗(Krr + Σ)−1kr∗.

Mixture of Experts (DGP+SARSA)

P (V |x∗,D) =
K∑

k=1

Pk(V |x∗,Dk).

Product of Experts (DGPxSARSA)

P (V |x∗,D) =
K∏

k=1

Pk(V |x∗,Dk).


