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Abstract
We describe a new approach for managing
aleatoric uncertainty in the Reinforcement Learn-
ing (rl) paradigm. Instead of selecting actions ac-
cording to a single statistic, we propose a distribu-
tional method based on the second-order stochas-
tic dominance (ssd) relation. This compares the
inherent dispersion of random returns induced by
actions, producing a more comprehensive and ro-
bust evaluation of the environment’s uncertainty.
We propose a particle-based algorithm for which
we prove optimality and convergence. Our experi-
ments characterize the algorithm performance and
demonstrate how uncertainty and performance are
better balanced using an ssd policy than with
other risk measures.

Distributional RL as WGF
Distributional RL can be cast as a Wasserstein
Gradient Flow (WGF). The optimization land-
scape is shaped by the free energy functional:

E(µ) = F (µ)︸ ︷︷ ︸
potential

+

temperature︷︸︸︷
β−1 H(µ)︸ ︷︷ ︸

entropy

.

The potential describes what it means to be opti-
mal. This is in terms of the distributional Bellman
operator (Bellemare et al., 2017):

F (µ) =
1

2

∫ (
T z(s,a) − z(s,a)

)2
dµ =

∫
U(z)dµ.

Discrete Time Solutions are obtained itera-
tively using the procedure of Jordan et al. (1998).
The method discretizes time in steps of τ and ap-
plies the proximal operator

ProxWτE(µk) = argmin
µ∈P2(µ,µk)

W2
2(µ, µk) + 2τE(µ).

Distance between probability measures is de-
scribed with the Wasserstein distance

W2(µ, ν) = inf
γ∈P2(µ,ν)

{∫
R2

|x− y|2dγ(x, y)
}1/2

.

Quantile Regression vs WGF

Figure 1: Error comparison of moment esti-
mates: Violin plots of the estimation error in the first
two moments using quantile regression and Wasser-
stein Gradient Flow regression are shown. The num-
ber of regressed samples is shown in parentheses.

Measuring Risk through Stochastic Dominance

The SSD relation is defined using distribution
functions and compared over the continuum of
their realizable values. We say that X stochasti-
cally dominates Y in the second order when their
respective CDFs integrate to satisfy

X �(2) Y ⇐⇒ F
(2)
X (α) ≤ F (2)

Y (α) ∀α ∈ R.

The function F (2)(α) =
∫ α
−∞ F (x)dx defines the

frontier of what is known as the dispersion space
(Dentcheva and Ruszczyński, 2006). The volume
reflects the degree to which a random variable dif-
fers from its deterministic behavior - if it were
simply a real number equal to its expected value.
Disperse outcomes are considered risky. Rational
risk-averse agents prefer X to Y when X �(2) Y .
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Dispersion Space

Figure 2: Dispersion space: The relative dis-
persion (i.e. uncertainty) of a random variable is
shown as the space between its cumulative CDF
F

(2)
X and the asymptotes (dotted). Here, the line
α−E[X] defines the behavior of X as its uncer-
tainty vanishes.

Policy Comparison Under Uncertainty

-1

-1

-1

-1

N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3
N(−1)

10−3

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-7/11 -7/11 -7/11 -7/11 -7/11 -7/11 -7/11 -7/11 -7/11 -7/11

-1

-1

-1

1-100

Figure 3: CliffWalk environment where two optimal
policies exist in return. However, the top path has less
uncertainty than the bottom path. We denote Nmean

std .

The ssd behavior policy recovers the target
policy using samples from the least-disperse
data distribution: We compare the episodic step
count and return using the ssd and ε-greedy pol-
icy. The two regression methods differ in their
sample complexity but realize the same solutions.

Figure 4: Using many risk levels can improve exploration: One risk level is not always appropriate for
every state. Here, the CVaR policy leads the agent away from its goal, causing it to explore more than with the
ssd policy, which uses many risk levels.

Function Approximation
In this experiment we test the hypothesis that
wgf Fitted Q-iteration is scalable to function ap-
proximation in the control setting. We parame-
terize return distributions with a two-layer fully-
connected neural network of 256 hidden units and
use off-policy updates with bootstrapped targets.

Figure 5: We find the wgf method matches the final
average return of quantile regression.

Policy Evaluation

Figure 6: Distributional policy evaluation: The
left plot shows the wgf estimated histograms of the
smoothed target densities. Convergence of the prox-
imal loss and the squared value error, shown in the
top two plots, indicate the evaluation quality. This
enables us to accurately recreate the outcome-risk di-
agrams, shown on the right, in descending order with
respect to their dispersion space size.


