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Relevant Scenerios
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Today’s Talk

Stochastically Dominant Distributional Reinforcement Learning

Full paper: arXiv 1905.07318

Measuring uncertainty involves computing statistics with hyperparameters.

We can eliminate hyperparameters without sacrificing certainty.
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Foundations
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Reinforcement Learning
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The RL Problem

Markov Decision Process: 〈S,A, p, γ〉 (Puterman, 1994).

States S, Actions A, Transition kernel p : S ×A → P(S × R), discount γ ∈ [0, 1).

Agent’s goal: maximize expected sum of future rewards.

Z(s,a)
π = R(s,a) + γR(S1,A1) + γ2R(S2,A2) + · · · =

∞∑
t=0

γtR(St,At)

∣∣∣∣ S0 = s,A0 = a.

Polices: Π = {π|π : S → P(A)}
Bellman’s equations

vπ(s) =
∑
a,r,s′

π(a|s)p(s′, r|s, a)
[
r + γvπ(s′)

]
.

qπ(s, a) =
∑
r,s′

p(s′, r|s, a)
[
r + γvπ(s′)

]
=
∑
r,s′,a′

p(s′, r|s, a)
[
r + γqπ(s′, a′)π(a′|s′)

]
.

Greedy policy π(s) = arg maxa∈A q(s, a)
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Model-free Methods for Estimation

qπ(s, a) =
∑
r,s′,a′

p(s′, r|s, a)
[
r + γqπ(s′, a′)π(a′|s′)

]
.

We assume the agent does not know the transition kernel p(s′, r|s, a).

Directly estimate qπ or vπ from samples (s, a, r, s′).

Sarsa (Rummery and Niranjan, 1994)

Q(s,a)
π ← Q(s,a)

π + α
(
r + γQ(s′,a′)

π −Q(s,a)
π

)
.

Q-learning (Watkins and Dayan, 1992)

Q(s,a) ← Q(s,a) + α

(
r + γmax

a′∈A
Q(s′,a′) −Q(s,a)

)
.

Minimize Temporal-Difference (TD) Error (Sutton, 1988): δ = R+ γQ(S′,A′) −Q(S,A)
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Measuring Uncertainty

Representing Uncertainty

Variance: var(X) = E[(X −E[X])2]

Value at Risk: VaRτ (X) = F−1X (τ)

Conditional Value at Risk:
CVaRτ = E[X|X ≤ ξτ ], ξτ = VaRτ (X)

Other measures of dispersion...
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Dispersion Space

-2 -1 E[X] = 0 1 2

F
(2)
X : N (0, 1)

F
(2)
Y : N (0, 2) α−E[X]

Dispersion Space

For some CDF F
(1)
X (α) = P (X ≤ α), we

define F
(2)
X (α) =

∫ α
−∞ F

(1)
X (z)dz

Volume of this space reflects the degree
of uncertainty
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A New Way to Compare Actions
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Equivalent to second-order stochastic dominance

X �(2) Y ↔ F
(2)
X (α) ≤ F (2)

Y (α) ∀ α ∈ R

Choose the action that induces a return with the smallest dispersion

{a∗ ∈ As : Z(s,a∗) �(2) Z
(s,a′), ∀ a′ ∈ As \ {a∗}}.
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Learning the Distribution of Returns

Lemma (Fishburn (1980))

X �(2) Y if, and only if µ
(1)
X ≥ µ

(1)
Y or µ

(1)
X = µ

(1)
Y and µ

(2)
X ≤ µ

(2)
Y , where (·) denotes a

particular moment.

+ SSD comparisons are valid when this ordering can be guaranteed

Distributional RL

Learn the distribution of returns µ(s,a) ∈ P2(R) s.t. Q
(s,a)
π = Eµ[Z

(s,a)
π ]

Satisfies a distributional Bellman equation Bellemare et al. (2017):

Z(s,a)
π

D
=R+ γZ(S,A)

π

∣∣∣∣ R,S ∼ p(·|s, a), A ∼ π(S)

Distributional condition: T z(s,a) = r + γmaxa′∈As′
z(s
′,a′) ∀ z ∼ µ(s,a)
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Energy-based RL

Free-energy Minimization

E(µ) =
1

2

∫ (
T z(s,a) − z(s,a)

)2
dµ︸ ︷︷ ︸

F (µ)

−β−1H(µ)

Optimal µ is the solution of the
Fokker-Planck equation

∂tµt = ∇ ·
(
µt∇(

δF

δµ
)

)
Discrete-time updates are given by

µk+1 = arg min
µ

W2
2(µ, µk) + 2hE(µ)
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Cliffworld
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An Experiment
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Results
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Results
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Results
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Results
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Results
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Discussion

Problem: Machines need to reason about the uncertainty in their environment.

Aquire and exploit knowledge of environment uncertainty.

Improve chance of aggregating rewards.

Investigate: Reducing hyperparameters in uncertainty statistics

How to control aleatoric uncertainty during exploration.

How to learn representations that capture aleatoric uncertainty.

Conclusion: Aleatoric uncertainty can be represented and exploited for decision making.

Possible to learn distributional representations with wgf.

Control uncertainty with SSD action selection.
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Questions
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