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A Preview of What’s to Come

» RL day consists of four lectures
v' 1. A First Glimpse at Reinforcement Learning
v' 2. Essentials of RL
= 3. RL in Modernity
4. Applications of RL

» This lecture will cover

m The function approximation setting (John).
m Case study: DQN (John).

m Case study: PPO (Xutong Zhao).

m Case study: AlphaGo (Xutong Zhao).

» The course is intended to prepare you for RL research.



Interesting domains often involve a large number of observations, states, or actions.



Stratospheric balloons can experience an enormous number of environment states.




Computer Go has 1070 states.
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Martin and Modayil (2021).

A simulated frog’s eye contains 24990 ~ 10204 observations.



Manipulating a Rubik’s cube involves precision control, with many actions.



Playing Atari involves high-dimensional observations.




The problem with tabular RL

» Tables contain a value for every state or state-action pair.
» In large-scale domains, this representation becomes intractable.

» The learner should be able to generalize between experiences.
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The problem with tabular RL

» Tables contain a value for every state or state-action pair.
» In large-scale domains, this representation becomes intractable.

» The learner should be able to generalize between experiences. 10



Where does function approximation apply in RL?

» Approximate value function 0, (x; w) ~ vz(s).
» Policy: 7(x;0)

» Part I focuses on value approximation.
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Agent State

» Agent state x(s) is the learner’s internal representation of environment state.

» Agent state encodes patterns of the observation stream.

» Useful agent states are often more complex than raw observations.
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b(x;w) £ w'x(s),

o(x;w) ~ v(s)

Agent state and feature vectors

» In a linear architecture, the agent state is a vector of features.
» The approximate value function is a weighted sum of features.

» There are many choices for features. 13



Examples of features

» Constant: x(s) =1

» Tabular: x(s) = (I(s =1),I(s =2),---,I(s =d))T

» Linear: x(s) = (O1,02,---,0;)" for k-dimensional observations.

» Aggregation: Binary features that indicate occupancy of some support set.
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» Tourier features: x(s) = Y1 e T .

» Neural network: x(s) = hyohy_j0---0hj(0) for £ hidden layers.
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Types of approximate value function architectures

» Monolithic architecture: one parametric function for ¢ or g.
» Stacked architecture: one parametric function for each action.

» Hybrid architecture: monolithic features and stacked final layers. 5



Case Study: Deep Q-Network
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Deep Q-Network (DQN)

» Learning system observes a stream of images.
» Objective: learn a good approximate action-value function for control.

» Architecture uses a stacked representation of shared convolutional layers.
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NatureDQNNetwork (nn.Module):
"The convolutional network used to compute the agent's Q-values
num_actions: int
inputs_preprocessed: bool = False

@nn.compact
f __call__(self, x):
initializer = nn.initializers.xavier_uniform()
if not self.inputs_preprocessed:
X = preprocess_atari_inputs(x)
= nn.Conv(features=32, kernel_size=(8, 8), strides=(4, 4),
kernel_init=initializer)(x)
nn.relu(x)
nn.Conv(features=64, kernel_size=(4, &), strides=(2, 2),
kernel_init=initializer)(x)
nn.relu(x)
nn.Conv(features=64, kernel_size=(3, 3), strides=(1, 1)
kernel_init=initializer)(x)
X = nn.relu(x)
X = x.reshape((-1)) # flatte
X nn.Dense(features=512, kernel_init=initializer)(x)
X = nn.relu(x)
q

_values = nn.Dense(features=self.num_actions,

kernel_ini tializer)(x)
jrn atari_lib.DQNNetworkType(q_values)

Code from Dopamine research framework (Castro et al., 2018)
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L(w) = E[(R +ymaxq(S', a;7) = g(S, 4; w))?),

Sa A> Sl ~ ,U()

DQN Loss

» Layer weights are denoted by w.
» Target network has weights 7.

» Approximate loss with an empirical expectation of i.i.d. experience. o1
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DQN Loss
» Layer weights are denoted by w.

» Target network has weights 7.
» Approximate loss with an empirical expectation of i.i.d. experience.
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Distinguishing features

» Draws i.i.d experience from a batch to remove serial correlation (Lin 1993).
» Computes targets from an equivalent network updated at a slower rate.

» Rewards are clipped to £1.
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[DQN video link]
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https://youtu.be/TmPfTpjtdgg

