Reinforcement Learning in Modernity

Part I. Function approximation and Deep Q-networks

John D. Martin®
December 24, 2021

“University of Alberta
jmartin8Qualberta.ca

A Preview of What’s to Come

» RL day consists of four lectures
v' 1. A First Glimpse at Reinforcement Learning
v' 2. Essentials of RL
= 3. RL in Modernity
4. Applications of RL

» This lecture will cover

m The function approximation setting (John).
m Case study: DQN (John).

m Case study: PPO (Xutong Zhao).

m Case study: AlphaGo (Xutong Zhao).

» The course is intended to prepare you for RL research.

Interesting domains often involve a large number of observations, states, or actions.

Stratospheric balloons can experience an enormous number of environment states.

Computer Go has 1070 states.

+¥- H**'\ i+

Martin and Modayil (2021).

A simulated frog’s eye contains 24990 ~ 10204 observations.

Manipulating a Rubik’s cube involves precision control, with many actions.

Playing Atari involves high-dimensional observations.

The problem with tabular RL

» Tables contain a value for every state or state-action pair.
» In large-scale domains, this representation becomes intractable.

» The learner should be able to generalize between experiences.

Similar
experiences

The problem with tabular RL

» Tables contain a value for every state or state-action pair.
» In large-scale domains, this representation becomes intractable.

» The learner should be able to generalize between experiences. 10

Where does function approximation apply in RL?

» Approximate value function 0, (x; w) ~ vz(s).
» Policy: 7(x;0)

» Part I focuses on value approximation.

11

Agent State

» Agent state x(s) is the learner’s internal representation of environment state.

» Agent state encodes patterns of the observation stream.

» Useful agent states are often more complex than raw observations.

12

b(x;w) £ w'x(s),

o(x;w) ~ v(s)

Agent state and feature vectors

» In a linear architecture, the agent state is a vector of features.
» The approximate value function is a weighted sum of features.

» There are many choices for features. 13

Examples of features

» Constant: x(s) =1

» Tabular: x(s) = (I(s =1),I(s =2),---,I(s =d))T

» Linear: x(s) = (O1,02,---,0;)" for k-dimensional observations.

» Aggregation: Binary features that indicate occupancy of some support set.

2wy

» Tourier features: x(s) = Y1 e T .

» Neural network: x(s) = hyohy_j0---0hj(0) for £ hidden layers.

14

Or(0f; W) dr(0¢, at; W) ., Gr(0t,01; W) Gr(0f, Qs W)

4 4 b Glovamiw) 4.4

f(w) f;w) f(w) fw)

Types of approximate value function architectures

» Monolithic architecture: one parametric function for ¢ or g.
» Stacked architecture: one parametric function for each action.

» Hybrid architecture: monolithic features and stacked final layers. 5

Case Study: Deep Q-Network

16

LETTER

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu’, Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’, loannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

do0i:10.1038/nature14236

Deep Q-Network (DQN)

» Learning system observes a stream of images.
» Objective: learn a good approximate action-value function for control.

» Architecture uses a stacked representation of shared convolutional layers.

17

4 84x84
Image
observations

Conv:
32 8x8
filters

RelLU

Conv:
64 4x4
filters

RelLU

Conv:
64 3x3
filters

RelLU

FC: 512
hidden
units

RelLU

FC: output for
each action

18

NatureDQNNetwork (nn.Module):
"The convolutional network used to compute the agent's Q-values
num_actions: int
inputs_preprocessed: bool = False

@nn.compact
f __call__(self, x):
initializer = nn.initializers.xavier_uniform()
if not self.inputs_preprocessed:
X = preprocess_atari_inputs(x)
= nn.Conv(features=32, kernel_size=(8, 8), strides=(4, 4),
kernel_init=initializer)(x)
nn.relu(x)
nn.Conv(features=64, kernel_size=(4, &), strides=(2, 2),
kernel_init=initializer)(x)
nn.relu(x)
nn.Conv(features=64, kernel_size=(3, 3), strides=(1, 1)
kernel_init=initializer)(x)
X = nn.relu(x)
X = x.reshape((-1)) # flatte
X nn.Dense(features=512, kernel_init=initializer)(x)
X = nn.relu(x)
q

_values = nn.Dense(features=self.num_actions,

kernel_ini tializer)(x)
jrn atari_lib.DQNNetworkType(q_values)

Code from Dopamine research framework (Castro et al., 2018)

Gravitar
Private Eye
Montezuma's Revenge

|

At human-level or above

| ““’“'"““F""!'llmmml

Below human-level

s
—

[

B

=

Fon

Foe __oon |

[

e .

r T T T T T (T 1

0 100 200 300 400 500 600 1,000 4,500%

20

L(w) = E[(R +ymaxq(S', a;7) = g(S, 4; w))?),

Sa A> Sl ~ ,U()

DQN Loss

» Layer weights are denoted by w.
» Target network has weights 7.

» Approximate loss with an empirical expectation of i.i.d. experience. o1

L(w) = E[(R +ymaxq(S', a;7) = g(S, 4; w))?),

Sa A> Sl ~ ,U()

1 n
=~ (i +ymaxq(si, s 7) = qlsi, a5 W),

=1

84,73, 5, ~U(D)

DQN Loss
» Layer weights are denoted by w.

» Target network has weights 7.
» Approximate loss with an empirical expectation of i.i.d. experience.

22

Distinguishing features

» Draws i.i.d experience from a batch to remove serial correlation (Lin 1993).
» Computes targets from an equivalent network updated at a slower rate.

» Rewards are clipped to £1.

23

[DQN video link]

24

https://youtu.be/TmPfTpjtdgg

